
7 17"Y 452 A VA T LE TOOL FO O T FILE TR ISER RM NvIPI"IXOU(U DEFENCE RESEMRCH ESTWLISNENT RTLUTIC
DAITNOUTN (NOY SCOT IR) J U FARRELL JAN 6?

WICLASSIFIED OAA-TC-S?/33 F/0 /2 NmlihhhIi

1.0 U9

M' 3 2
b. LM

liI

66I

Ll.h 235.

*~l~w 0tolo Sis -HART @ .5 5 w

UNLIMITED DISTRIBUrION 03
I * National Defence Dfense Nationale

Research and Bureau do Recherche
Dwelpment Wench et Dwelpprnent

TECHNICAL COMMUNICATION 87/303
January 1987

0zi ILLG

N
L, A VERSATILE TOOL FOR

DATA FILE TRANSFER AND

MANIPULATION

Joseph B. Farrell

Defence Centre de !:
Research Recherches pour la

Establishment IS D~fense ,

Atlantic Atlantique :

0 a

%~%

b, "'' , '', ";,.'.,".,' '- 'z% i' ¢-,' '- ,:',"-". ." "•"," -.","., -",..,--% -" ." .' ,. A-P.. P Q;- i" "Q-A,7 -' ..j-

OUINC RMACHESTBLSHEN ALATICCW D WERHE POR DMS AUNI
9 GO VIESTIRIET p 0 soxIol 9 GOVI ST IECT C.P 100

DAPTUOUTM. N..SLE"HE ATfov.

say z? 1020 26-300 8Y 32

i1Lii;'

UNLIMITED DISTRIBUTION

* NMional Defence Ddfens* aiel
Ikwqsure do WmhOcl

==rlemes bnch et d6s.appeet

A VERSATILE TOOL FOR
DATA FILE TRANSFER AND

MANIPULATION

Joseph B. Farrell

January 1987

ApDproved by H.M. Merklinger H/Surveillance Acoustics Section

DISTRIBUTION APPROVED BY

O/UAD

TECHNICAL COMMUNICATION 87/303

Defence Centre de
Research Recherches pour la

Establishment Dense

Atlantic Atlantique

Canad -

%.

(ze-!
..."_i*," ' "% , " "P"""% 7'"".

1
"% % . " """' ' . '"." " . "A. " " .. "." - " . ' " . . " . """ . "

Absract

This document describes in detail a software tool for manipulating data files. The
Surveillance Acoustics section at Defence Research Establishment Atlantic has acquired
VAX computers over the last few years, and analysis tasks which were formerly done on
PDP- 11 computers are now being moved to the VAXen. PDP- 11 s are still used in the at-
sea data collection role, so some means is necessary of transferring the data files thus
produced to the VAXen for signal processing and analysis. PDP- 11 data files are typically
located on 9-track magnetic tape, so one method of transferring the data would be to read
PDP-I I tapes on the VAXen. The software tool described here (a program named
TRANSFER) was written, in par, to perform this data transfer chore, taking into account
the special formats and header information in the files produced by the PDP- l Is.
Manipulation of data files already residing on a VAX is also possible using TRANSFER.
The program is versatile, allowing the user to choose channels and data segments to be
transferred between files with a high degree of freedom.

lea

SornuTnaire 1

Le present article d~crit en detail uin outil logi ciel permettant la manipulation de
fichiers de donnides. La section de l'acoustique de surveillance du Centre de recherches
pour la ddfense, Atlantique. s'est dot6 d'ordinateurs VAX au cours des derni~res ann~es et
les travaux d'analyse e ffectu~s jusqu'i present sur des PDP-lI I le sont maintenant au Jb.

moven du VAXen. Toutefois, les PDP- I I sont encore utilisds pour Ia cuejilette des %
donn~es en mer. les travaux d'anah'se et de traitment des donn~es ndcessitent donc uine 0
m~thode de transfert sur le VAXen des fichiers produits pendant la cueillette des donnees.
Puisque les bandes magn~tiques de 9 pistes constituent le support de memoire typique des
fichiers de donn~es PD5P- 11. on pewt envisager)a procedure suivanhe comme miethode de
transfert des donn~es: lecture des donndes m~nmoris~es sur les bandes PDP- 11. puis
transfert au VAXen. L'outil logiciel d~crit dans le present texte tun programme appele
TRANSFER) a 66 &rit en partie en vue d'assurer cette tache de transfert des donnees. enl
fonction des donn~es d'ent~te et des formats sp~ciaux des fichiers produits par le PDP- 11.
TRANSFER permet auIssi la manipulation des fichiers de doniiees dj r m~moris~s danN Lin
ordinateur VAX. Ce logiciel est tr~s polyvalent et perruet i 'Lutilisateur de choisir Lic n
grand de-rd de liberid les pistes et les 'seuments de donnees .,I transferer d'un fic:hier a

1 1%~

iv

Table Of Contents

Section Page

A b stract ... ii

1. IN T R O D U CTION ... 1

2. FILE FO RM A T S ... 1
2.1 Time Series (.DAT) File Format .. 2
" " Fourier Coefficient (.FTR) File Format
2.3 Power Spectrum (.PWR) File Format 22.4 VAX and READRT File Formats ... 6

3. PROGRAM IMPLEMENTATION .. 6
3.1 Program Structure 7
3.2 Program Features ... 7
3.3 Im plem entation Details .. 10

4. HOW TO USE THE PROGRAM ... 13

5. FUTURE DEVELOPMENTS ... 17

6. CONCLUSIONS AND ACKNOWLEDGEMENTS 18

References .. 19

Appendix Page

A. DETAILS OF USER PROMPTS - INTRODUCTION 20
A 1. Alphabetical Listing of Prompts 20
A2. User Messages From TRANSFER (Grouped by Subroutine) 22

A2.1 Messages from TRANSFER main program
A2.2 Messages from Subroutine CHECK 22
A2.3 Messages from Subroutine MTFILE ".
A2.4 Messages from Subroutine GETTAP 23
A2.5 Messages from Subroutine CHANNELSELECT 23
A2.6 Messages from Subroutine SKIPPER 24
A2.7 Messages from Subroutine DISK.-WILDCARD 25
A2.8 Messages from Subroutine READER 25

B. PROGRAM LISTING - INTRODUCTION 26
B 1. Listing of the TRANSFER Main Program 26
B2. Listing of Data Output Routine ... 32
B3. Listing of Mag-Tape File Open Routine 33
B4. Routine to Allocate and Mount Mag-Tape 36
B5. Channel Selection Subroutine 36
B6. Routine For Choosing Data Segment To Be Transferred 40
B7. Routine to Decode Switches in Filename 44
B8. Routine to Determine Wildcard File List 45
139. Routine for Data Input From File .. 45
B 1 0. -1 ransfer Status Routine ... 47

!

.. '

0.1. %.

1. INTRODUCTION

Until recently, data collected at sea by DREA scientists were analysed almost
exclusivel. on PDP- II/34s. When the Surveillance Acoustics section began to purchase
VAX computers. the situation changed drastically. Most analysis tools which existed on
the 11,34s are nov, available on the VAXen (the accepted plural form for VAX) in a similar
or more powerful form. New, tools (such as a suite of shot-analysis programs) have also
been appearing. The multi-user nature of the VAXen has made these software tools
available to a \.kider range of users, and consequently more analysis is being performed.

PDP-1ls have been used in the at-sea data collection role at DREA for
approximatel)\ 10)ears, and perform their job very efficiently. Real time data collection
programs write data (generally to 9 track magnetic tape) in a format which has been well
tuned to the needs of DREA scientists over the lifetime of the PDP-1 is. Naturally enough.
this format is somewhat foreign to the VAX computer, and data tapes produced on the
PDP- 11 s cannot be read directly on the VAX without a software interface. To allow more
users to access and analyze raw data, such a software interface has been vitten, and this
note describes that tool, a program called TRANSFER.

TRANSFER has been written to be as general as possible, leaving many options
open to the user. Most files written to tape by the PDP- II data acquisition/analyvsis q

programs can be moved from mag-tape to the VAX using this program. The formats
accepted are '.DAT" time series data files), ".FTR" (Fourier coefficient files), and NOW
".PWR' (po%%er spectrum files). Other features such as transferring a segment of an input
file defined by start and stop times, or transferring only a subset of the total number of
channels in the input file are also available. Disk space is at a premium on the VAXen (as it
is on all computers), so the latter feature is an important one. It allows disk space to be
conserved if a user wishes to analyze only a few of the channels of input data available.

The default format for VAX disk files created by TRANSFER is binary direct
access. This format allows random access to any block in the file, and is a relatively
compact storage format. Most of the analysis programs now present on the VAXen accept
input files in this format. An older format (READRT) is still used by some analysis
programs, and TRANSFER will use this as its output format if requested.

Size reduction for disk files already on the VAX is desirable in many,
circumstances, so TRANSFER will also perform VAX disk file to VAX disk file transfers.
The same options are offered in the disk-to-disk mode as in the tape-to-disk mode.

The next section of this note describes the formats of the tape files TRANSFER will
'Cept from PDP-1 Is. and ives more details on the VAX and READRT disk file formats.

Folloxing that, a detailed description of program implementation ,.vill be viven. including a
discussion of all the options available. An example of program use is then presented to
give the reader some feeling of how a terminal session proceeds and finally, some -
possibilities for future developments of the program are proposed.

2. FILE FORMATS

TRANSFER A as originally written to accept 0-track ma'eti,"C tanes written by' the
DREA PDP- II data recording programs, and transfer them to VAX files. To make thi,
document self-contained, a brief description of the fonrat of the \aiou, iTpes o tape inpaT

....... . . "
°-e % . o . • . % ° = o . . % - •. - ' . ,.- . °.o ,• °

2
files will be presented here. A fuller description of the file formats and the philosophy
behind their structure is contained in a Technical Communication by D. Caldwell [1]. Disk
file types which are compatible with TRANSFER will also be described.

2.1 Time Series (DAT) File Format

Time series data (.DAT) files are the most common type of input file used with the
TRANSFER program. Time series data are recorded on magnetic tape on the PDP-1 is in
this format, and since it is the intention to use the VAX for most analysis, raw input data
will be moved to the VAX via this file type.

Each tape file begins with a 512 byte header which describes the physical
parameters of the file such as record length, sampling frequency, etc. The header is
divided into four blocks - the first 32 bytes form an integer block (2 bytes per integer), the
next 32 bytes form a floating point block (4 bytes per floating-point number), the next 128
bytes form a byte block (1 byte per entry) and the remaining 320 bytes form an ASCII
block (1 character per byte). Table I illustrates these blocks and gives a brief description
of the contents of each location in the header block. A more detailed description of the
meaning of the header block contents can be found in [1].

The data portion of a typical time series file is diagrammed in Figure 1. In the
sample file shown, there are m time samples for each of the n input channels. The values
are multiplexed so that the first time sample for each channel appears in sequence, followed
by the second time sample for each channel, etc. The DREA header actually allows the
time series data to be written in other formats, but the one shown here is used almost
exclusively.

2.2 Fourier Coefficient (.FTR) File Format

This type of file is used by analysis programs which require Fourier coefficients but
do not contain an FFT module of their own. Programs for performing interference
cancellation which require ".FTR" files currently exist on the VAX. A program (called
SAFTR) [21 can be used to produce ".FTR" files from ".DAT" files on the VAX.
TRANSFER will work with the ".FTR" format, but the ".DAT" format is more likely to be
encountered.

As in the ".DAT" format, each ".FTR" file begins with a 512 byte header [1]. Table
II gives a brief description of the contents of each location in the ".FTR" header block.
Figure 2 shows the contents of a typical ".FTR" file. In the sample file shown, the data are
multiplexed in a different manner from that in a ".DAT" file. Here, all Fourier coefficients
from each transform of each channel are kept together; that is, blocks of data for each
channel rather than single samples are multiplexed.

2.3 Power Spectrum (.PWR) File Format

A power spectrum tape file is likely to be transferred from tape only if time series
analysis was performed on a PDP-1 1. SEQFFT is the most widely used spectral analysis
program on the PDP- I Is, and the output of that program conforms to the ".PWR" format.
As analysis effort moves to the VAX from the 1 ls, transfer of this file type is likely to
become less common.

The ".PWR" file begins with a 512 byte header [1]. TABLE III gives a brief
description of the contents of each location in the ".PWR" header block. Figure 3 shows

'S.

a.
,

3

INT7EGER BLOCK J

I LABEL (1) - Block size # of 16 bit words/physical block
ILABEL(2) - Record Size # of words per logical record
ILABEL(3) - # of records # of data records in file
ILABEL(4 - Repetition rate # of records per repetition cycle
ILABEL(5) - Number type Int-1,Flt-2,CmplxI-lloct,CF-12oct
IL.ABEL(6) - Bytes per number eg.: I-2,F-4,CI-4,CF-8
ILABELM7 - # of channels Must divide evenly into ILABEL(2)
ILABEL(8) - Multiplex length Word-i, Record-Record size
ILABEL(9) - # accumulations Normally 1
ILABEL(l0)- X-axis Time-1, Frequency-2
ILABEL(ll)- Y-axis Linear-l,Square-2 ,Log-4 1
ILABEL(12)- Sequence EUser assigned, usually increments
ILABEL(13)- Block Scaling Power of 2 scaling factor
ILABEL(14)- Spare
ILABEL(15)- Spare
ILABEL(16)- Spare

FLOATNG-POIN BLOCK

FLABEL (1) - Sampling f req (Hz) -ye means heterodyned
FLABEL(2) - Heterodyning f req. -ye means real heterodyned%
FLABEL(3) - Reference level Calibration factor
FLABEL(4) - Max. magnitude
FLABEL(5) - Gain correction 1.00343332 for power of 2
FLABEL(6) - Spare
FLABEL(7) - Spare
FLABEL(8) - Spare

BYTEBLOCK
BLABEL(1) -Channel #
BLABEL(2) -Gain (dB) for channel in BLABEL~l)
BLABEL(3) -Channel #
BLABELM4 Gain (dB) for channel in BLABEL(3)

BLABEL(127)- Channel #
BLABEL(128)- Gain (dB) for channel in BLABEL(127)

ASCII BLOCK
ALABEL~l) - First character of ASCII label block%

ALABEL(320)- Last character of ASCII label block

Table 1: Header contents of a Tim~e Series (.DAT) file

Figure 1: Data fonnat in a typical 'lime Series (.DAT) file

% % %

. t... Z

4

EI1TEGER BLOCK
ILABEL(i) - Block size # of 16 bit words/physical block
ILABEL(2) - Record Size * of words per logical record
ILABEL(3) - * of records # of data records in file
IL.ABEL(4 - Number of sequential transforms
ILABEL(5) - Number type Int-i.Flt-2,CmplxI-Iloct,CF-i2oct
ILABEL(6) - Bytes per number eq.: I-2,F-4,CI-4,CF-8
ILABEL(7) - * of channels Must divide evenly into ILABEL(2)
ILABEL(8) - # of frequency bins
ILABEL(9) - # accumulations Normally 1
ILA.BEL(iO)- X-axis Time-i, Frequency-2
ILABEL (ii)- Y-axis Linear-i, Square-2, Log-4
ILABEL(i2)- Sequence # User assigned, usually increments
ILABEL(13)- Block scaling Power of 2 scaling factor
ILABEL(i4) - Window type None-i,Hanning-2,Harning-3, Kaiser-4
ILABEL(i5)'- # of zeros
ILABEL(i6)- # of points Of Overlap

FLOATING-POIN BLOCK
FLABEL(i) - Start frequency of first bin (Hz)
FLABEL(2) - Heterodyning f req. -ye means real heterodyned
FLABEL(3) - Frequency resolution (Hz)
FLABEL(4) - Max. magnitude
FLABEL(5) - Spare
FLABEL(6) - % overlap
FLABEL(7) -Time interval of a simgle FFT (hours)
FLABEL(8) -Spare

B=F BLOCK

BLABEL(1) -Channel #
BLABEL(2) - Gain (dB)
BLABEL(3) - Channel #
BLABEL(4) - Gain (dB)

BLABEL(i27)- Channel
BLABEL(128)- Gain (dB)

ASCII BLOCK
ALABEL(i) - First character of ASCII label block

ALAB3EL(320)- Last character of ASCII label block

Table I[[: Header contents of a Fourier Coefficient (.TR) file

rel1 iure 2: Daafral in tyial Fo2 e ofiin .)fl

Figre : Dta ornil n atypcalFouierCoeficent(.FR) il

. v %

% p

INTEMGER BL)OCK
ILABEL(l) - Block size # of 16 bit words/physical block
ILABEL(2) - Record Size 0 of words per logical record
ILABEL(3) - * of records # of data records In file
ILABEL(4) - Number of sequential spectral estimates%
ILABEL(5) - Number type int-,Flt-2,CmplxX-licct,CF-l2oct
ILABEL(6) - Bytes per number eg.: I-2,F-4,CI-4,C-F-8
!LABEL(?) - # of channels
1LABEL(S) - # of frequency bins
ILABEL(9) - 4 accumulations Normally1
ILABEL(1O)- X-axis Time-1, Frequency-?
ILABEL(Il)- Y-axis Linear-I. Sauare-2,1Zocr-4
ILABEL(12)- Sequence * Usrasged sal :nceet

ILABEL(J.3)- Spare
ILABEL(14)- Window type None-1,Hanning-2,Hamzn-Ina-3-,Ka-ser-4
ILABEL(15)- # of zeros
ILA.BEL(16)- # of points of overlap

FLOATING-POINT BLOCK
FLABEL(1) - Center frequency of first bin (Hz)
FLABEL(2) - Heterodyning f req. -ye means real heterodyned
FLABEL(3) - Frequency resolution (Hz)
FLABEL(4 - Max. magnitude
FLABEL(5) - Spare
FLABEL(6) -Time interval between sequential frames (hrs.)
FLABEL(7) -% overlap
FLABEL(S) -Spare

BYTE BLOCK
BLABEL(l) -Channel

B"';EL(2) -Normally C. gain already compensated fcr
BLABEL13) -Channel 0
BLABEL(V) -Normally 0

BLABEL(127)- Channel
BLABEL(128)- Normally 0

ASCII BLOCK
ALABEL~l) - First character of ASCII label block

ALA.BEL(320)- Last character of ASCII label block%

Table Ell: Header contents of a Power Spectrum (.PWR) file

PFTlchanl PFTlchan2 PFTlchaan3 ... PFTchnl PFT2chan2 .. 4

Figure 3: Data format in a typical Power Spectrum (.PWVR) ile

s . 0- *.-*.P e- Air- 1

6
the contents of a typical ".PWR" file. Multiplexing of the data is similar to that found in
".FTR" files. Here, there are q power points grouped together representing the power in
each of q frequency bins for each channel. Power spectrum levels are typically stored as
decibels (dB). Once again, different formats for the data storage are acceptable as long as
they conform to what is described in the file's header, but the format of Figure 3 is by far
the most common.

2.4 VAX and READRT File Formats

Files from TRANSFER are stored on VAX disks in one of two formats. The most
common of these is a binary direct access file. This format is compact and allows direct
access to any block in the file.

Data files are typically very large, often taking an entire 2400 foot reel of 9 track
magnetic tape, so transferring them to disk causes storage problems to appear quickly if J.
several people are doing analysis. For this reason the disk files should be stored in as
compact a form as possible.

Random access to any part of the data in a file is also important. A scientist doing
time series analysis may be interested in only certain segments of data in a large file, so
having to sequentially access each record to get to the desired one would be inefficient.
After analysis, display programs (such as PLTPWR) also need random access to the data
so that any segment may be displayed rapidly and in any order. The format of the VAX
files permits this.

The other format is called READRT after the file transfer program which originally
used it. This format is used by some of the older analysis programs, and results in a
seQuential unformatted file. It does not take a great deal more disk space than the VAX
format, but the advantages of random access to data are lost. It is not recommended that
this file format be used in future analysis programs.

3. PRO(;RAM IMPLEMENTATION-

This section begins with a description of the program structure and the features
available in TRANSFER. Implementation details are then presented, and non-standard
practises are discussed more fully.

TRANSFER was written in FORTRAN 77, but is not easily transportable to
computers other than VAX and micro-VAX models made by Digital Equipment
Corporation due to its extensive use of system calls. (System calls use internals of the
VNIS operating system directly and are not part of the FORTRAN 77 standard.) The
system calls were used to speed up tape and disk access, and to make use of some of the
powerful capabilities of the VAX-VMS operating system. On the bright side, however, the
program can be run on any of the VAX machines from DEC without modification.
TRANSFER can be used from any ANSI] standard computer terminal, but works best with
a VT1 00i200 series terminal or emulator.

Subroutines from many sources were used in TRANSFER. Asynchronous disk
input/output routines from NRL (the Naval Research Laboratory) in Washington D.C.
proved to be very useful in this implementation [3]. Other useful routines from various
groups at DREA have been incorporated to avoid duplication of programming effort.
Subroutines obtained from outside sources will be noted as such in the following 5,

discussion.

d

.

i "S

7

3.1 Program Structure

TRANSFER was written in a modular format in order to facilitate modifications and
additions. 'User-friendliness' and simplicity of use were major considerations in program
design. Flexibility is a keyword for TRANSFER since many input file formats must be 4
accessible to VAX users, and the data in those files should be easy for the user to
manipulate. Simplicity of use and a high degree of flexibility are not always compatible,
but the attempt has been made to achieve both objectives with TRANSFER.

Even the most efficiently written program can be practically useless if it has a poor
user interface. For this reason, considerable effort was put into making the user interface
of TRANSFER easy to understand and use. The terminal input session has been separated
into related modules (for example, one module deals with defining the section of an input
file to be transferred into the output file). Each module is presented on a separate screen on
the user's terminal, and a heading appears at the top of the screen describing the purpose of
the module. Examples of this will be given in a later section.

Program structure is outlined in the flowchart of Figure 4. There are three basic

segments - input, processing, and output. Within these segments, subroutine structures
were used when possible. These are not noted in the chart, but more detail on some of
them will be given in a later section. The loop structure of the program is fairly simple at
the flowchart level but became rather difficult to implement because of the differences in
input file structures which had to be accommodated. Most of the options available to the .
user are noted in the chart, and will be discussed in detail in the following sub-section.

3.2 Program Features

Input files for TRANSFER can be located either on magnetic tape or on disk. In
the case of tape, ".DAT", ".FTR" and ".PWR" files are accepted, while only VAX format
disk input files are accepted. One of the inconveniences of using magnetic tapes is the
requirement that the user must remember to allocate the tape unit and mount the tape (both
VMS commands). TRANSFER avoids this by the use of VMS system calls. When the
user specifies a tape unit (for example MSBO:) as part of an input filename, TRANSFER
tries to allocate that unit and then mount any tape found on it. If the unit is already assigned
or the tape cannot be mounted, the user is informed and program execution halts; otherwise
the operation is transparent.

The program will not stop executing if it encounters a parity error while reading
from a tape file. Parity errors on ".DAT" tape files are a distinct possibility due to the
manner in which the PDP- 11 data collection programs operate. High speed is the priority
for the data collection programs, so no error checking is performed while writing to tape
(resulting in the possibility of parity errors). (Error checking uses valuable time and could
cause data to be lost in some cases.) When TRANSFER hits a parity error, it rewinds the
tape to the last good record of data and substitutes that for the corrupted data. This action
could bias the statistics of the output if many parity errors are encountered, but was deemed
to be more appropriate than destroying the time synchronization of the file by throwing
away data. The user is notified each time a tape parity error is encountered, and a running
count of the errors is presented.

TRANSFER allows wildcards to be used to specify a family of input files with
similar names (or parts of names) for input from either disk or tape. A short description of
wildcarding would be appropriate for the uninitiated - it hinges upon the use of a wildcard
character (in this case '*'). Filenames are made up of a name and an extension separated
by a period (for example TEST.DAT). The family of files with the name TEST and aflx

%0

... 1

• " ~ d
o

" "• *-.- .P " , ,.d.o. o- * . , .%. o- .oa-- - - - .. - - .- & . - o -h. . -.. - - . . .

8

S Iw

Input no in DREA1 huadif fleaue

SegmentI

Demounn outptfln
a nd type (VAXo
READRT)

Get desired Startig tme.
and skip inao file to Iha
time.

Choose som or aUl of the1
input channeIs tor inclusion
in the outpnut file. J

J Read data hoinmiptfl

Sont chaeis and ownove

Ithose not to be wamufenvd.

Output Wrtj uptdaat ie

Segment

Figure Up~k s:Geeau flwhf orTA SE

temnl

9
extension can be specified by typing TEST.*. Similarly all files with the extension ".DAT"

can be specified by typing *.DAT. Typing TES*.DAT would specify all files having a
name beginning with TES and having the extension ".DAT". When TRANSFER
encounters a wildcard in a filename, it finds all files which satisfy the input name set and
processes them in sequence. A user can specify a new set of transfer parameters for each
input file, or alternatively can set up parameters for only the first file and use those same
parameters for all of the other files.

Tape files present other possibilities as well. A user may wish to transfer a number 4,

of files from tape without having to specify their names (for example the second through
the fifth files on the tape). This option is available to TRANSFER users through an input
file switch (switches are only available when using input files on magnetic tape). A switch
is used in the following manner: the user types the name of the tape unit upon which the
reel is mounted, followed by a slash (/) and a switch parameter. For example, to transfer
the first through the fifth files from a tape on unit MSBO:, the user would type
MSB0:/START=1/STOP=5 when prompted to enter an input filename. Here the START

switch defines the file on tape with which to begin the transfer, and the STOP switch
defines the number of the final file which is to be transferred.

There is only one other switch available; that is the /V (or verify) switch. When
this switch is included after an input tape filename (for example MSBO:TEST.DAT/V),
TRANSFER will ask the user for verification before skipping U file which it encounters
on the tape (If the first file found is the one the user specified, it is processed without
question). This switch is useful if the user wishes to process the first file on a tape but
doesn't know its name. In that case, when TRANSFER asks whether it should skip the
file, the user need only give a negative reply and it will be processed. When /V is not used, "-
the entire tape will be scanned for a filename match and no option for processing non-
matching files will be presented to the user. ,,.'

The default filename for files produced by TRANSFER is the same as the input
filename with the extension .TFR to indicate that it is output from IRANSEER. The user
can supply a different filename and/or extension if desired. Output file format (VAX or %
READRT) is also selectable.

The case will often arise where only a small portion of an input data file will be
used for analysis or display. For this reason, TRANSFER allows the user to choose a
segment of the input file for transfer. A user-selected segment is always defined by its start
time. The time at which recording for a file began is included in the DREA header. This
time is displayed for the user, who can then specify the time at which the desired segment
of data begins. TRANSFER will then skip into the file to the desired time (a rather
complex process. since the time and number of records to be skipped depend upon the type
of file being transferred'). When the file has been positioned to the desired start-time,
the user is given the option of specifying the segment length as a number of blocks (512
bytes/block), a time duration, or the remainder of the file. Thus a user has great control
over the data transferred to the output disk file. '

-For example. .FTR and .PWR files have a time resolution which is determined by the .. e%

FFT length used in producing the file. For 2kHz samples and an 8K FFT, each set of %
Fourier coefficients covers a 4 s time interval. Due to the construction of the files, a time
resolution of less than 4 s would be impossible in this case. In this situation, the actual
start time is the accessible time closest to (but not less than) that requested by the user.

%'.

.. , .. , -.....

10
Full control over the channels to be put into the output file is also a necessity.

Channel numbers which were used in data recording are entered in the byte section of the
DREA header and so are available during TRANSFER operation. The user can select any
subset (or all) of the channels in the original input file for transfer into a VAX file. The
header of the new file thus created will be modified to include only channel numbers of
those channels presently in the file. This capability is useful in reducing the amount of data
stored on disk since non-acoustic channels or channels known to contain corrupted data
need not be transferred to disk.

During operation, TRANSFER provides feedback to a status screen on the user's
terminal. This screen gives information on the parameters set up for the file transfer and on
the progress of the transfer.

3.3 Implementation Details

This section presents a more detailed look at the structure of TRANSFER. Each
major segment of the program is shown in a flowchart indicating which operations are
carried out in the main program, and which of them are carried out in subroutines.

Figure 5 shows the file selection segment of the program. Wildcarding and
switches are implemented in this segment. The user is first prompted for a filename, and
then the name is processed to check for switches. If switches are present, they are decoded
and the proper flags set for later processing. If a wildcard character appears, a flag is set
for tape processing, or a check of the appropriate directory is performed and all matching

*" names extracted for disk file processing.

Once the input name has been processed, the first file which matches all criteria is
found and opened (not necessarily an easy task when using magnetic tape). If the file
opening was successful, the DREA header is read into a buffer for use in setting up the
transfer parameters. System calls are used for all of the magnetic tape operations in the
interests of speed. Disk operations are done using a set of subroutines obtained from the
Naval Research Laboratory. These allow asynchronous operations (ie. computations can
can-y on while data are being read from the input file) and are written in VAX-MACRO, so
they offer a speed advantage over pure FORTRAN calls.

When a file has been properly opened, the user is prompted for an output filename.
A default (described in the preceding section) is presented, but this can be changed to
anything the user wants. If wildcard files are used, the user is given the option of
specifying transfer parameters separately for each file or of using the transfer parameters set
for the first file for all of the others. Output format (VAX or READRT) is then chosen, and
the output file is opened.

The flowchart shown in Figure 6 gives more detail of the structure in the processing
and data output sections of TRANSFER. The information contained in the DREA header is
used heavily in this segment of the program. Parameters such as record size, the
multiplexing type and the number of channels are used to determine the the number of
blocks which must be skipped to get to the desired point in the input file. TRANSFER
works with "frames" of data. A "frame" is defined as the smallest amount of data which
can be read from the input file which gives a full set of input data for each channel in the
file. A full set of data can vary from a single time sample in a ".DAT" file to a number of
points defined by the FFT length used for processing in a ".FTR" or ".PWR" file. This
length is also determined by the type of multiplexing used in the file (see Figures 1, 2 and
3). As well, a "frame" defines the minimum time unit which can be accessed by
TRANSFER.

"¢, , * ' 4 e , , -P a ',*-/9_..W.-' -* ". ' -' - . . .e .' " .'' -' -.. '. .".. ." - " •.. . . - . -.- " - . ."
-,.','.,-,,-, .,',.-, "..:..:,-.A..... . : .. ., -:. . . ".. ". d ".," v

-~ ~~~~~~~~~~ - -I-~ -~W - -W W -P~ - - - -W ~ ~. .

The subroutine which is used to skip to the desired time in the input file and to
define the segment length for transfer makes extensive use of VMS system calls when tape
is being used as the input mediurt.. Because of the random access nature of VAX format
disk files, picking the correct starting time is as simple as addressing the proper block when
the input file is on disk. Some subroutines written by D. Peters and L. Bunch (both DREA
summer research assistants) were incorporated in this routine to improve the user interface.

Main Program Subroutines

$ort-mc eam put name Fn n ooesice
fHow sitche and ll rd user(f ny

o chng dis des.irndeHd.le

Wildcard fileaes? w~hst rtra

Let tape fiee acag nag se-
apecifyr pararchr isr eaneh

inu file.ieddskte n

Let~~usn usaatfa o A
4< Tp Fl?'dtrinlie.Ie.nzr

Open oupu fine weathde

Yh Opsire deirdrmhLe il

For prm mautoutae

from nput nd &Uw useFi hge 5: deilsoieSeetoeegetd.RASE .,

N .a*

12

Mzt am m *=der

R.p~ bamk oof Me L
____#_________A_#_of_ leile

fcr~e m - ..

& W&Ow llll '&mo

Stone

Figure6: Deti~s ofp11-1111in1TANSFE be F,
MaddyDRFA eadw

reft m" mdwft6

EVV fil .

4Owd 9, A

13
Determining which channels are to be processed is simple enough if a single file is

being used as input. If a wildcard file set has been chosen, the process becomes more
difficult. Channels can be selected by "number", that is by their standing in t.ie order in
which they were put into the file (first, second, etc. in the multiplexing hierarchy), or by
the hydrophone channel which they represent (included in the byte label of the DREA
header). For example, the "first" channel recorded in a ".DAT" file may actually
correspond to the time series for hydrophone channel #20. The user has the option of
using the same parameters for each input file in a wildcard set, and so must decide whether
to key on channel numbers or hydrophone numbers. While such a set is being processed,
it is possible that channels will occur in a different order in some of the files. The headers
of the output files will reflect this, but it is often better to key on hydrophone numbers in
such situations. If a chosen hydrophone does not exist in one of the input files, the user is
notified during execution and allowed to change the selection.

Once channels have been selected, the DREA header is modified accordingly and
written into the output file. At this point the data transfer can begin. Enough blocks are
read from the input file to give at least one "frame" of data. If some channels are not being
transferred, these are then removed from the input buffer. It is most efficient to write large
secments of data to disk, so input blocks are processed until a relatively large output buffer
is filled or the input file is finished. The collected (perhaps reduced) data are then written to '.
the output disk file using the DBIO routines from NRL (for a VAX format file) or
FORTRAN write statements (for a READRT file).

Once a file is completed, input and output files are closed before proceeding. If
wildcard files have been selected, a check is made for further matches and if any are found.
the next matching file is processed. (The user may or may not be prompted for transfer
parameters for files after the first, depending on the option chosen.) If wildcard files are
not being processed, or no more wildcard matches are found, the user is asked if more files
are to be processed. At this point, the program can be exited or a new run started.

4. ttOW TO USE THE PROGRAM

A sample terminal session will be presented in this section. "Snapshots" of the
users terminal screen will be used to illustrate the user interface and provide information
on running the program.

The executable version of TRANSFER is located in the director%,
SAS:[FARRELL.TRANSFER] (soon to be moved to DREAPACS:[TRANSFER]). To
,tart the program, the user must tpe RUN SAS:[FARRELL.TRANSFERJTRANSFER.

The following scenario is presented as an example. A user has a mag-tape
produced by a PDP- 11 data recording program) containing time series data which are to be
transferred to the VAX. He believes the filename to be ZZZ003.DAT, but is unsure of the
extension. He does, however, know that the file begins at 10:33:41 and that data from 32
channels are recorded in the file. Ten seconds of data beginning at 10:33:50 and 4
channels out of 32 in the data file, namely 2. II, 18 and 23 are to be transferred.
TR -\NSFER is started using the command mentioned in the preceding paragraph, and then
al, Input session begins.

In the following figures, a header categorizing the parameters to be input appears at
the top of each input screen (boldface typei. After every prompt, the default value is
,resented in brackets To accept the default value, the user need only enter a carnage
return Help can be obtained after an. prompt by typing a " followed by a camage v

.t '...

0

.....................
A ' ..' . " .,. - • ." - ."akh ,"' '*V .-' ' ""'*.

--. .i

14

return. User-entered responses appear in boldface type (after a prompt, so there should be
no confusion with the screen headers). Some prompts appear only under special
circumstances (when a wildcard file input set is being used, for example), and these are
shown in italics when they would not otherwise appear in the example being presented.

The first screen which appears once TRANSFER begins execution is shown in
Figure 7. Here the user sets up the input and output file specifications. h

File Setup

Enter name for the input datafile. (MSBO:Q38334.DAT?) ? ?,)
File name: UNIT or STRUCTURE:NAME.EXTENSION
Enter name for the input dataflle. (MSBO:Q38334.DAT ?) ? MSA:DUMMYDATN,*)

%MOUNT-I-WRITELOCK, volume is write locked
%MOUNT-I-MOUNTED, RT 11A mounted on _MSAO:

Found file: ZZZ003.DAT
Want to pass over this file?(-l=y/0=only/l=no/2=rewind) (-1?)? 1)

Default output file extension is TFR -Change it? (N?) ?
Enter the new default file extensi on. (TFR?) ?
Re-specify output parameters for e ach input file? (N?) ?

Enter a name for the Disk output file. (ZZZ003.TFR?) ?4)
Should the output file be Vax (V) or READRT (R) format? (V?) ? V 4.

NOTE: *) signifies a carriage return.
'-

Figure 7: First Input Screen of TRANSFER ,.*

'J"
To demonstrate the use of the "help" feature, a "" was entered in response to the ,..

prompt asking for an input filename. The help field shows that the name format is
UNIT:NAME.EXTENSION, and the prompt is then repeated. The unit or directory must
be the first entry in the file specification - if no unit or directory is specified, the current
directory on disk is used as a default.. In the example, the tape containing the data is
mounted on unit MSAO:. The user doesn't know the name of the file to be transferred, so a
dummy name has been entered along with the /V switch (this means that the program will
ask before skipping any file). Messages from the system following the filenarne entry
show that the tape has been successfully mounted on the requested unit and that the tape is
write locked (ie no data can be written to it - the safest policy with data tapes).

The /V switch causes the name of the first file found (ZZZ003.DAT) to be
displayed. The user then has several options. If a -1 is entered, the file will be skipped
and the search for DUMMY.DAT will continue. Entering 0 will cause ZZZ003.DAT to be
skipped and the next file found to be processed. Entering 1 will cause ZZZ003.DAT to be
chosen as the input file, and entering 2 will rewind the tape and begin searching from the
start of the tape again. The default is to skip the file, but in this case. the user has chosen to
process it by entering a 1.

Next, a name for the output disk file must be specified. The default filename is the
same as the input filename with the extension .TFR. and in this case, the user has chosen to

.I .. " .t . -. ...i i" I . - *5 .'* . .,% % % . •% • " ". . " . , ' .. * *5 * n" "... ".""" ' "" ".." " .. . 5. ' •

go with the default by entering only a carriage return. (If wildcard input filespecs had been "
used, the user would have been prompted to determine if the .TFR file extension should be
used for all output files. At that point, a new extension could have been specified which
would appear on all output files from the wildcard set. The option to re-specify output
parameters for each input file would also have been presented if a wildcard set had been
chosen.) Finally, the output file type must be chosen. Here, the user has chosen VAX
format (described earlier) and entered a V followed by a carriage return (a carriage return
would have been enough since V is the default, but entering V does no harm).

The next screen to appear deals with selecting a file segment to be transferred and is
shown in Figure 8. At the top of the screen, the start time of the chosen file is displayed.
The user is then given the option to start the transfer at a later time in the file (default is to
start at the beginning). Here, the user asks to start the transfer at 10:33:50. TRANSFER
skips into the file to the desired point (or the nearest accessible time greater than that
requested - constrained by the input file format). The user is notified of the start time
which the program is actually using and of the number of blocks being skipped. The next
prompt allows the user to set the amount of data to be transferred. The user has three
options; n (where n is some number) will transfer n 512 byte blocks (to the nearest
"frame") into the output file; -I will transfer all data from the specified starting position
(time) to the end of the input file into the output file; and -2 will allow the user to specify a
time interval for transfer. In this example, the user has chosen to transfer by time interval.
Time is specified in the HH:MM:SS format, and in the example, the user has asked for 10
seconds worth of data to he put into the output file. (If a wildcard file set had been
spe'ified for input, the user would, at this time, be asked to decide whether to transfer the
same channel set or hydrophone set for each input-output file pair. This choice doesn't
deal with "data segment specification", but was placed on this screen due to program
structure constraints. The prompt appears in italics as wildcards are not being used here.)

Data Segment Specification
This file starts at 10:33:41

Do you want to begin processing at some other time (N?) ? Y .,.
Enter the time at which you wish to start (10:33:41?) ? 10:33:50 1")

Actual start time will be 10:33:50
14.4 physical blocks will be skipped.

Enter n to X-fer n blocks.- 1 for all.-2 to specify time (-1?)? -2 .

Enter the length of time of the transfer (00:01:001?) 00:00:10 4,)

Sceci tm sarne H P '0l or channelh () from each file "('"?) .

Figure 8: Secind Input Screen for TRANSFER

Oice a file segment has been defined, a channel set-up screen appears (shown in .'"

-higure 9) The total number of channels in the input file lincluding non-acoustic channels)
i, displayed, followed b% a list of the acousoc channels and their corresponding
t',.drphone numner,, (from the byte part of the DREA header) From these, the user

e .. . j .- d _ • . .%

16
selects which channels are to be transferred into the output file. The number of channels to
be transferred is specified first (-I will transfer all channels - including non-acoustic ones -
to the output file), and then the channels (not hydrophone numbers) are selected. The
selected channels can be separated by spaces or commas. This concludes the input session
as TRANSFER has all the parameters needed for execution.

Channe Setup

There are 32 channels in the input file.

The following are acoustic channels:
1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32

The corresponding H/P numbers are:
1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32
How many channels do you want to process? (-I for all) (-I ?) ? 4 .4
Enter the channels you wish to study : 2 11 18 23 4)

Figure 9: Third Input Screen for TRANSFER

Once data transfer has begun, program status is continuously updated on the
terminal screen. The status screen (shown in Figure 10) can be divided into three
segments. (Note that parameters which depend on choices the user makes during the input
phase of the program appear in boldface type in the Figure.) The first of these segments
displays the current time and date and is updated as the program executes.

The second segment is static and gives information on the input and output files.
Part of the ASCII label is shown to give some indication of the origins of the file. Below
this label, the names and start times for the input and output files are displayed. The
number of frames requested for transfer to the output file is also shown. If all blocks from
the specified start time to the end of the input file are to be transferred, the number of
frames to be transferred is shown as 'TO EOF which stands for To End Qf Eile (Note that
this is shown in the sample screen of Figure 10 - which came from a different run of
TRANSFER with the same input file). The total number (including non-acoustic) of
channels in the input file and the number being transferred are shown, along with their
channel numbers and hydrophone numbers (acoustic channels).

The third segment is dynamic and updates as the program executes. The number of
frames processed is shown along with the average time taken to sort and transfer each
frame to the output file. In the sample screen shown, 100 blocks have been processed, and
the average time (clock time) per frame overall has been .02 seconds. A running count of
parity errors during tape reads, is given below the "average time per frame" block if any
errors occur.

When all data have been transferred to the output file, the user can request that
another file be transferred. In this case, the program starts again with the first input screen.
If a wildcard set was specified as input and the same transfer parameters were to be used
for each file, the next transfer will proceed automatically. If transfer parameters were to be

.4

.0C
L .,~o ,eo. e° ' . ° '. ,..,e, . .

. ,..-.- .- ,.-+.-,-.. ..- .. ,-... j-.

17
specified for each file in a wildcard set, the user goes through all input screens except the
first for each file. If a tape file was used as input, the tape will be dismounted and rewound
automatically when execution of the program finishes.

FILE TRANSFER STATISTICS
4-DEC-1986 11:50:00

ASCII Label: 32 CHANNELS REAL

Input File: MSAO:ZZZ003.DAT Output File: ZZZ003.TFR

Starts at: 10:33:41 Starts at: 10:33:50

Number of frames requested: TO EOF

Channel usage: 4 chosen out of 32 total

Channels: 2,11,18,23

Acoustic Channels: 2,11,18,23

Number of Blocks processed: 100

Average time per frame: .02 sec

Figure 10: Program Status Screen

Appendix A gives a list of all prompts which can appear during transfer execution,
along with the 'help' string for each. As well, full descriptions of prompts which have not
been discussed fully in the text are given. Messages which appear on the screen when an
event requiring user attention occurs during TRANSFER execution are also listed and
explained in the Appendix.

For completeness, a listing of TRANSFER and its major subroutines is included in
Appendix B. Some of the VMS system calls are unavoidably confusing; however the
programs are fully commented, so no further description will be given in the main body of .-,.

this document.

5 F.'TURE DEVELOPMENTS

Currently, output files cannot be written to magnetic tape. This feature would be
use::l, since no tool for reducing the size of data files exists on the PDP-1 ls (PDP- II
u,\r, have the same need for this functionality as VAX users). Squeezing several ".DAT"
fiics onto a single mag-tape would be another use for a tape-output feature (no tool exists
for do.ng this on the VAXen at present). Such a modification requires a module for PDP-

Sformat tape output (currently being developed by G. Heard at DREA). Once the module
i: &:,c:ned, the upgrade should take relatively little time.

Transfer of other file formats would also be desirable (for example READRT to
-\'. c(,nversion), and will be implemented if enough user interest is shown. A generic

.[, .Q, , S. , ,4'. -.- '.* -. " q* -,'* , -," ." -. -. ': ' ,',', ' .- ,-'.'-'. . .'.'.- ".. L-.'''''''''''''.-.,,-,.'. ' ' . ." '

18 -1
,S

transfer option (block-for-block copy of an input mag-tape file to VAX disk) is being
developed and should prove useful for non-DREA generated tapes.

6 CONCLUSIONS AND ACKNOWLEDGEMENTS

This note has described a robust file transfer program for the VAX computer. The
program allows transfer of PDP- 11 format magnetic tape files (and VAX disk files) to
VAX disk files which are formatted properly for use by the Surveillance Acoustics section
suite of signal processing and display programs. Data manipulation tools which allow
selected channels and data segments to be transferred are available within the program.
making it a versatile tool for pre-analysis data preparation.

Thanks to Ed Chaulk, Vance Crowe, Phil Staal and many others who made useful
suggestions during TRANSFER's creation. Almost all of their suggestions have been
incorporated in the working program. Asynchronous disk input/output routines written by
J. Padgett of NRL and obtained with the help of Art Collier at DREA proved to be
extremely useful, increasing the speed of TRANSFER significantly. Subroutines written
by Vance Crowe, Laurie Bunch and Doug Peters were also used, making my programming
job a great deal easier. Figures 1, 2 and 3 were produced by Phil Staal. Thanks should
also go to Bruce Skinner for his aid with VAX VMS system calls.

r2

.S

-

.5

°-

o

5.%

. . . ° .

*1
°

° % " . .* ~ . . - ,
°

,. o " ." - . . . " . %
°

* " •. - ... o -

19

References

1. Caldwell D.A., "A Standard for the DREA Data Descriptor Block", D.R.E.A.
Technical Communication 87/302 , Dartmouth, Nova Scotia, December 1986.

2. Farrell J.B., "SAFTR - A Program for Producing Fourier Coefficient Files on the
VAX Computer", D.R.E.A. Technical Communication 87/ (DRAFT), Dartmouth,
Nova Scotia, February 1987. ..%' -

3. Hurdle B.B., "Private Communication", Naval Research Laboratory, Washington,
D.C., February, 1986.

p..

NON

. ..

L'.

f.% M

%,~,!.~: :~~:;~Z;-;:-~ U'.*~ * t* . *P **.~~*.:.

20 APPENDIX A

A - DETAILS OF USER PRONffTS -LNTRODUCTION

Appendix Al lists all of the prompts which can appear on the user's screen during
TRANSFER execution and gives a brief description of each. The help available for each
prompt is also listed. Appendix A2 lists messages which appear on the screen when an
event occurs during TRANSFER execution which requires attention or should be noted by
the user.

Al - Alphabetical Listing of Prompts

PROMPT: Default output file extension is .TFR - change it?
HELP: AD output files will have the specified extension.
DETAILS: Allows the user to change the default file extension which will be used

when processing wildcard input file sets. If parameters are not being
changed for each file in the set, output filenames will be the same as the
input filenames, but with the default extension substituted for the original.

PROMPT: Do you want to begin prcessing at some other time?
HELP: Default is to start at the time shown.
DETAILS: Appears when the start time of the input file is displayed. The user can start

the output file at the same time, or modify the start time for output by
responding "Y" to this prompt.

PROMPT: Do you want to process another file?
HELP: Default is to exit the program.
DETAILS: Allows processing to continue when the current input file (or set) has been

completed.

PROMPT: Enter a name for the disk output file.
HELP: Default will be the same as the input name with the extension .TFR.
DETAILS: Defines a file where the output will be dumped.

PROMPT: Enter n to X-fer n blocks,- 1 for all,-2 to specify time.
HELP: -2 will let you enter a time interval for the transfer.
DETAILS: Defines the segment of data to be transferred. Data will start at the specified

start time and have an extent specified by the response to this prompt.

PROMIPT: Enter name for the input data file.
HELP: File name: UNIT or STRUCTURE:NAME.EXTENSION
DETAILS: Defines a file (can be a wildcard file set and have switches included in the

filename) where the input data are to be found.

PROMPT: Enter the channels you wish to study.
HELP: No help appears for this prompt.
DETAILS: Allows input of a vector of channel #s which are to be transferred. This

prompt appears after the number of channels to transfer has been established
and a list of the available channels has been displayed.

PROMPT: Enter the length of time of the transfer.
HELP: Format is HH:MM:SS. %

DETAILS: The user must enter the time extent of the data segment to be transferred %
from the input to the output file.

APPENDIX A

' e,0

- .. e

*.°-

APPENDIX A 21

PROMPT: Enter the new default file extension.
HELP: Typically three letters long (leave out the ".").
DETAILS: Allows a new default file extension to be set. Appears after the prompt

allowing the user to decide whether or not to keep the .TFR extension.

PROMPT: Enter the time at which you wish to start.
HELP: Format is HH:MM:SS.
DETAILS: Set a new start time for the output file. The prompt appears after the user

requests a transfer start time other than the start time of the input file.

PROMPT: How many channels do you want to process? (-1 for all)
HELP: Enter the number of channels to process.
DETAILS: Lets the user select from the channels available in the input file.

PROMPT: Proceed using the subset of requested phones found?
HELP: Re-specify H/P or skip this file if the reply is N.
DETAILS: Prompt appears when the required H/P set is not found in a wildcard file.

Execution can continue with the subset of H/P found in the file.
Alternatively, the user can modify the H/P set or skip the file and proceed to
the next one in the set.

PROMPr: Re-specify output parameters for each input file?
HELP: Else use the default output file name & specs.
DETAILS: An option used for wildcard input file sets. If the user replies "N" the

parameters entered for the first file in the set will be used for all of the
others, and the output filenames will be the input names with the default
extension. If the user replies "Y" all prompts will appear for each input file
in the set.

PROMPT: Select the same H/P (Y) or channels (N) from each file?
HELP: Default will select the same H/P from each input file.
DETAILS: Used in conjunction with wildcard file sets when transfer parameters are not

being changed for each file in the set. Either H/P or channels will be kept
the same for each output file.

PROMPT: Should the output be VAX (V) or READRT (R) format?
HELP: (V) format compatible with DISPVAX, SASPEC, etc.
DETAILS: Sets the format of the output data file.

PROMPT: Skip to the next file in the input set?
HELP: Otherwise use this file with reduced # of chans.
DETAILS: Prompt appears (when channels are being kept the same in a wildcard set)

when channels differ from those expected in the file set. The user can
proceed with a transfer of the reduced number of channels, or skip to the
next file.

PROMPT: Type 1 to take closest record start, 2 to re-specify time.
HELP: Closest may be earlier or later than the chosen time.
DETAILS: Appears when the user has requested the transfer of a number of blocks

which doesn't result in an integral number of data frames in the output file.

APPENDIX A

A 0A

22 APPENDIX A

PROMPT: Want to pass over this file?(- l=y/O=only/1=no---irewindi
HELP:. -l=pass file&look at next/O=correct/l =use file--rewind.
DETAILS: Used in conjunction with the /V switch for skipping files on mag-tape. The

user can: (- 1) continue searching for an exact match for the input filename.
(0) skip to the next file and process it, (1) process the file found or (2)
rewind the tape and then continue the search.

A2- User Messages From TRANSFER (Grouped By Subroutine)

A2.1 Messages from TRANSFER main program

MESSAGE: Stop *** fatal -- input file is empty.
SOURCE: TRANSFER main program.
CAUSE: Appears when the iser tries to open an input disk file which contains no

data.

MESSAGE: Dismounting Tape.
SOURCE: TRANSFER main program.
CAUSE: Tape input was completed or end of tape was reached.

A2.2 Messages from subroutine Check

MESSAGE: Error in system call at position *

SOURCE: Subroutine CHECK.
CAUSE: An error condition resulted during a VMS system call.

A2.3 Messages from subroutine MTFILE

MESSAGE: Stop *** All files processed.
SOURCE: Subroutine MTFILE.
CAUSE: All files from a mag-tape /START /STOP set have been processed-

MESSAGE: End of tape encountered - rewinding.
SOURCE: Subroutine MTFILE.
CAUSE: Reached the end of a mag-tape being used for input.

MESSAGE: Skipping to next file.
SOURCE: Subroutine MTFILE.
CAUSE: A file with a name different than the input filename was found and is being

skipped (either because the user requested it or because the NV switch was
not used).

MESSAGE: File **** found.
SOURCE: Subroutine MTFILE.
CAUSE: Found a file which matches the input filespec.

MESSAGE: Found file *
SOURCE: Subroutine MTFILE.
CAUSE: Appears for every file found when the N switch is used in the input

filespec.

APPENDIX A

e er

APPENDIX A 23
MESSAGE: Assume you want to skip to the next file.
SOURCE: Subroutine MTFILE.
CAUSE: Appears when the user responds ambiguously to the prompt asking whether

or not to skip the file found.

A2.4 Messages from subroutine GETTAP

MESSAGE: Tape is already mounted - assuming you did it.
SOURCE: Subroutine GETTIAP.
CAUSE: A mount request has been issued for a tape unit that was already mounted. Fir'

MESSAGE: Error - device probably allocated to another user.
SOURCE: Subroutine GETIAP.
CAUSE: Failure in a request to allocate a tape unit to the TRANSFER job.

MESSAGE: Device already allocated to you.
SOURCE: Subroutine GETITAP.
CAUSE: Routine tried to allocate a tape unit already allocated to the user.

A2.5 Messages from subroutine Channel Select

MESSAGE: Channel Select - no acoustic data found in file.
SOURCE: Subroutine ChannelSelect.
CAUSE: The byte label of the DREA header indicated that there were no acoustic

channels present in the file.

MESSAGE: Working on file *
SOURCE: Subroutine ChannelSelect.
CAUSE: Informs the user of the current file being processed in a wildcard file set.

MESSAGE: The H/P available differ from the originals.
SOURCE: Subroutine ChannelSelect.
CAUSE: One or more of the requested hydrophone channels is not present in the

wildcard file being processed.

MESSAGE: You are keying on channels rather than phones, so I am proceeding.
SOURCE: Subroutine Channelselect
CAUSE: Hydrophone numbers have changed in a wildcard file-set but the user is

keying on channels rather than phones, so this serves as a warning.

MESSAGE: You asked for a channel not found in the input file.
SOURCE: Subroutine ChannelSelect.
CAUSE: User is keying on channels, and one (or more) of the required ones was not

found in the current wildcard input file.

MESSAGE: Proceeding with reduced # of channels. :,%

SOURCE: Subroutine ChannelSelect.
CAUSE: User has chosen to process a file, even though it doesn't contain all of the

files originally asked for.

MESSAGE: There are ## channels in the input file.
SOURCE: Subroutine ChannelSelect.
CAUSE: Informs the user of the number of channels available.

APPENDIX A

% V V a%"s .•% "', -

24 APPENDIX A

MESSAGE: The following are acoustic channels.
SOURCE: Subroutine ChannelSelect.
CAUSE: Informs the user of the acoustic channels in the input file.

MESSAGE: The corresponding H/P numbers are:
SOURCE: Subroutine ChannelSelect.
CAUSE: Informs the user of hydrophone numbers corresponding to channel

numbers.

MESSAGE: Channel Select - sorry no defaulL
SOURCE: Subroutine Channel-Select.
CAUSE: The user selected no channels for transfer to the output file.

A2.6 Messages from subroutine Skipper

MESSAGE: This file starts at: HH:MM:SS.
SOURCE: Subroutine Skipper.
CAUSE: Informs the user of the start time of the current input file.

MESSAGE: Actual start time will be HH:MM:SS.
SOURCE: Subroutine Skipper.
CAUSE: Informs the user of the actual start time of the output data file. May be

different from the requested time due to data frame size in the input file.

MESSAGE: Disk start block will be: ###.
SOURCE: Subroutine Skipper.
CAUSE: Informs the user of the start block number of the input disk transfer.

MESSAGE: #"; physical blocks will be skipped.
SOURCE: Subroutine Skipper.
CAUSE: Informs the user of the blocks to be skipped on tape.

MESSAGE: You specified a zero-length transfer - try again.
SOURCE: Subroutine Skipper.
CAUSE: User specified a transfer time less than the frame time of the input file.

MESSAGE: WARNING - you are trying to transfer 0 blocks - try again.
SOURCE: Subroutine Skipper.
CAUSE: User specified a number of blocks less than the number of blocks in a data

frame.

MESSAGE: Transfer time must be at least: HH:MM:SS.
SOURCE: Subroutine Skipper.
CAUSE: Informs the user of the minimum time which can be specified for a transfer.

MESSAGE: You are not using an integral number of records.
SOURCE: Subroutine Skipper.
CAUSE: User tried to transfer data which did not fit into an integral number of

frames.

APPENDIX A

It , . € .- e - .- ,€ .* ." ..%." . . , ° . * * ." .° . . . ", , ', "-"" .". "4 ". ". .- 4
°
"o .- . '. ",P .q . . . "" "

°

" ' • % "w** "* % "" "' p*, %p ", "m . *. % ". * ". % " . . % b
° .

", -'' ". ". ". ° ""% %. ". % " '- - ' "o "- . " *,
d' • € • @ J * • * , °'•% *'%'%• d' e "it " " " " °° €'• ' "* o ' "" " " °" , " " """" " ."

APPENDIX A 25

A2.7 Messages from subroutine Disk Wildcard

MESSAGE: No more files match the input spec.
SOURCE: Subroutine DiskWildcard. %
CAUSE: All files matching a wildcard specification have been found. %

A2.8 Messages from subroutine Reader ..I

MESSAGE: Error reading record!! Error count = ##.
SOURCE: Subroutine Reader.
CAUSE: Routine encountered a parity error on tape and successfully passed it.

MESSAGE: End of file encountered.
SOURCE: Subroutine Reader.
CAUSE: End of an input file was encountered during a read.

MESSAGE: Saving ### frames and exiting.
SOURCE: Subroutine Reader.
CAUSE: Informs the user how many data frames are being stored after an end of

file was encountered during a read.

MESSAGE: Read puts us past EOF - blocks to read ###.
SOURCE: Subroutine Reader.
CAUSE: Disk read would go past EOF.

MESSAGE: New blocks to read -
SOURCE: Subroutine Reader.
CAUSE: Informs user of the number of blocks which will be read from a disk file

when a full read would go past the EOF.

MESSAGE: Error encountered on disk read - saving what I can and exiting.
SOURCE: Subroutine Reader.
CAUSE: Informs the user that an error occurred during a disk read.

S.1*

-V

APPENDIX A
%,..
*,N

- *.

26 APPENDIX B

B - PROGRAM LISTING - LNTRODUCTION

This Appendix contains listings of the TRANSFER program and its major
subroutines. The casual user is unlikely to find these listings useful, however those
writing programs for accessing PDP- II tape files should be able to glean some
information. The programns are commented fully, and most operations other than system
calls should be easy to interpret. Print size has been reduced to conserve space.

BI - Listing of the TRANSFER Main Program

PROGRAM NAME: TRANSFER

CWritten by:
C Joseph 8. Farrell.
: DREA

21 Jan. 19Sr

Latest revision: Aug. 1986 p

Tris program accepts a filename,opens tnat f! e on an RT-'
man tape (cr VAX dCIs file in standard 'PDPIIS' format: and reads in the .p

C DRA standard header. The user Oan therc hoose aome or elI o: the Input
cranne., to be wrtten irto an output dKss file (in standard PIS'
for Tat or In the old 'R=RT' format;. The tape unit does no- need to

C be mcunted or allocated before the program Is rur.
The prograir was written tc replace and expand on the functiona.1ty of

C the READR7 program wrItter. by Ken Hann of ASP.

C SUBROUTINE CALLS:
C 1) ERASE SCREEN- Clears the screen. or the user's tarinna.

2) VTMESS - Puts a message or. the user's te rr.1na.
C 3) INPUTS - Reads a string from isers terminal
C 4; SYSSASSION - Subroutine to asign a channel.
C 5) LBSSTOP - Stops program execution or, error.
C 6) SYSSQ0Ow - Queued input-output from. a channel.

7 CHECX - Checks the stauS bu!er f Je.z a QID
8) GETYN - Gets a Yes or No response from the user.

C 9) DROPEN(C) - Opens (creates) a disk file.
IC: DBS:ZE - DetermInes the size of a disk file.

rli BREA' - Reaos data from a disk file.
12) DBWA:T - Waits for disk operatiorn to complete.
'.3) DMCKUTE - Turns of error reporting from DB4T routines.
:4) SK:PER - SKIps Into a flle to a spec1fled time.
151 Channe. select - Chooses channels to process.
16: Write header - Writes neader to the output file.

:', :NPUTT - Reads at Irteger from tne user.
18) DBWRITE - Writes data to a disk file.
19) DOBCLOSE - Close& disk f1es.
20; SE7_CURSOR - Moves the cursor to a specified .ocation.

MAIN CODE
.. *

PROGRM TRANSFER... "

--- Parameter and Interns" variable declarations.

FMPLICIT :NTEGER*4 (a-z)

INCLLDE ' (Sdrtdef)

PARA.METER MSC."5
PARAMETEP (SSSEN'DOFAPE-'878' X)

BYTE 'labey (12: Byte part of DRiA header
BYTE store abel(1291 Temp. store for byte !abe.
BYTE E-X" search(l1) !Checks for end of tape
BYTE o tput data(C240) 'Output data
BYTE raw _byte data (50000 'Raw Input data
BYTE raw header(512) kaw header data

CHARACTER asoe "32C ASC.I part of OREA header
CHARACTER defa.lt extension64 Z)efault f..e exters~on
CHARA-7ER chask Used i. ma; tape channel
UiARACTER defalt'"I User input defau.t

iAkAC-ER if!:e*64 :nput filename ".

CHARACTEP newt Iine8 S'tart time for processng
ZHLARACTEP oidtime8I Start time of Input data
-KARACEP o!1e64 Output filename

APPENDIX B
4.,

-p ' . " • ,. j. / ., o . " - '. . .. - . .P- , -. - . , "# d. - . - - % ' ." " ' ' ' ' ' " % - " " " . " -" . " ' " " " -

APPENDIX B "

"HAAZLB o.ypo Flag for output f..e type
:NARAZLI tape a - Chocxs tape marks
:I4Ah:ZEA ,ap rugm He 4ader filenamef

Zi4&AZLRwft~.64WrKIng fi~ename

:NT~E. .ocs rom tnp:t &.Oct& to road from fi.e

:wrEGP*. bytes portL CK Deter1nec M~ input ft..
:EGP2-etypo rnput ft-otypo (.)T etc.,

:MfLERP2 nyoropooo~sf*2S Hyarophona, numbers
:N'E:El. (.6; Ints,"r part of DRLA header

:vEaP *2 npwu c nann*. Input cnanne. for tape
rrGE nmvbor:Cf tanrn.A # channo.5 Ir. in~put fli.

2NEEI niJeber sortod Nuft-er of elements sorted
:NIEGZ' ; procesilt2S1 Cftanne.s to Do processed

:MU 2 se'ectdr _ ass 1128, For picking bytes
:qNLZ;EP. s~ft fag f.ag for cnanno romova.

stE-EI art fl.. Start for n a rec tape ftes
:NrLiR.to.:. Stop !or -iuerc. tape flOs

te~~~~t .or S.6 bfe

:NEE* .ocxs psrorcoco Dterm:ined by tInp,.t flie
t~ocxstc reo 0 clock& for .nput reac
c.ccas to rite # 0.055s for ou1tput wrtte
Dytes _to_reao 0 bytes read before sort

tc - process 0 channa.5 to process
:Crt5OC..-!v6 C!%an. bYtos

:K'EZEP*4 .99 Flag :or disk fl~e Inpu;t

fNEE" rame s:ze # cjss or records per frame%
:NEEf* rajie tc road tIput frames to read 4

-REL'1 D. LOc for disk reads
:NwEGEP*4 ierror Errtr froom disk roads %.

:WTEGEP*4 t~me%#
otE:EP4asx :p.: r.npu:can* cnanno. for disk 4P

tWEE* h nremenit for sortting channes.s %o
fVEIE* rames-s:cred Couriter. for frames stored

: rZN-I 'rec ccr.'ter for frames proessec
:%TEEP*4 MasK

r~~Octs Nityoer 0! r(.Ocls in p~ f:e
:oo1oEGE Rea.. * of outpu o foss

NT5P4 offset 4seC for craririo sorting
4 sysso 1.s am dltl souts a taps .J

.. ~ :anotheor process arothier f:,..L
,:C .rCzf_:ap* Lnc Cf tape ino.catcr

ext r F.oG for o.utput *xterstor
rA orrecf..& F:.e f.ag

:,:ZA ety '-so.- response furc*..or %I

Lzr2:ZA.. out spec P&-oc ou;tput, f..especs N
t~c~z~ts4.r SKItP fi.0 !.a;

ver . y 'esrtfy ft.eS -c be sx~pped
:(OG: CA C c: a - *S..dcarc .r !i.ena %

REAL VoQKs a~ rite

RLA- ~ s temporary storage
RfLA. faoe. ;I r.oa: :r; par-. cf DRLA neodr

RLA- frsc'..cr.a.--OK ... If

REA!. frame fract tor
i

REAL f rame:t iMe

AA reccodspor readP

RLA: . me Inte-va.

eg. :va.v-cv .Ape namo. ra. neoer'
eQ-V4.ez* .-*D. - a. nsoe-

ec..a.5c far. . ra. oeader 33
.coa~ez. ~atu. . a. adr

:orsmr f'er s!>.rfi.e

,r ra,. r.5. Dyte d4-a

esera - 554 C C : cr' r

st , It -

28 APPENDIX B
d*fa6.t extension -

- t- .ear trio screenr and writ he rsader msage.

ca". erase screen (.,
Ca. set Crsor(2,fl
ca.. vtaasi re', 'c',' F.ie setup V7i00/201 SPECIFIC

-e: a name for tro input ft1e.

ca.. Inpu:s(pronpt (), :t:eo4 '
ca.. strSupcasetti.e tf:Io

T--- 5ot.e.flne wat scnes were used :r "re input .e speclfictlor.

Ca.. sw... es. :.:ie.ve.:f..star.f':e,.stopfi. . .

A a .,aAT exter.s cn :f none was sup. ec and trne t.sname was no:
spec. feo as a O.I caarc.

-:c.ard * .FALSL.
- Ifn sx , f'., '° .n.C :.ocarc - .TRUE.

. - ,en2';.,:e:

.:s- f~i:senldtfhoe ''.DAT'

ondnc !!
•

. r ., .. cdaara - T'JE.

0 £ t f ' a 0.5£ 0 Msgtap. !:b.

Pd.? : aoa i'ie .e;. cr. :-f:.or;:2 no. 'H$'.aic.

-- - Cis1 - " .:i "M C.a9f:.Ie ope: stt'.o, at.iorwse proceed wttr
--- a r 'a;tpe PO- ard read.

.vk sta r t f :.e, s o _ f .e

0.10

:a . e; i:.e , if l nn ." :a~ '. j2! fl.el,- 0 a-c roac ror tri dom. - e.e a s rot to input

-f.!b.djaard trio

-a.. :s .dad::o h~ooh

e. ...

,&
.
. !Z. -cn t.eI.eC 2 t.

: n O lX.q - V ; t at inpat f..q -- t..

- .OC nm e: net ,

a. doe.11 . t..0ar

3.6 p , .a-o -.4 n*
--: .0 .. 0 ? r$ t . t. p. t

-4.. s :s . , t.........

a.. Sr." 7A s~ rs,,1: m d :* :

r0. ." d m oa, s ap - eh'. !sr. e , s o

C. o a, tSP .'p.. .a pae-o

-a. ar t12

'eC ?.:s'ge 3 fa . '.-a

ALPPENDIX B

%|

AL:
.!@ m € • ,,m, p . - ' . .me ,/ c a c"e, t cc" , . " . "a. " " "o'a "e a".""' *" '"" " " * J ' "" "" " ' " " *

, % • "e % " = ".. .. .-.. ".. .0! -.. Ocar " @ ,% " .% % "% ""% " ,'','"%"% .' "* "' " ' °% '° ' '

APPENDIX B 29

*A.. C..tp.t fl.e s . ava e apec .. C1 extenat.

f lox, -.2tner
ca.. in ; ts

2efa... extesion.,I

en ~ yp:ca. . _%ret Ong.r .or- * .. a'C th e

A&s. .dad thor. _'prm'.: C ev rp-,f.*
soa.. 30A- f.*n'e

..... a. t 3 .. : . .. 4.

3* Z *enICC -o DO tT.@ San* as te 'rp-* e.oamo.
ne ox.ts;c 2ea.. cac

..... .~ I

.00to.1:' cncice for on* o..:p..: f...ename.

-- ~~~b i.e,..noa:o, .p2 :e. o ax c: RrJALP formal .

otype - V
ca.. :.np..t(pronp*(5 c:type,rje.d
ca.. atr$4pcaaerotype,Otypei

-pe- 0:. f..e r ne reqeste !t.-m
ZhCEN . aoias c rc..o:ne, mpor ~L, cr.ra .. y ,*rt~ for -

* fo-ype.eQ. 'V')!no

ca.. dtoper.cdlaa cranne._ojtl,o...eI

A aac cs-eqen~tia.'
.rc if

.;-.. parameters using lata fror t..nne header.eNP
0%

0 tyae-. OAT:ar.:ae. a :tp-
2''.aa 2>.q. aro >olK>.c eyp- .PM

a .oaO >abe. 6; *l2r of e.(2l, i
facopor D D.s -fOatotcpf .C:9

(!Pe inut-(Ofrbrc hare ae

fttcliO:a. t,.OCKS - frac1jbonaj perCK - .flt

7 fracto:aona.K - Intl

2'rfrxcr~orR._D.ocitsc.:.C.COC,trer.
D.ocsper_ cot -

lD.0CKc per cot - Int (../ffraCtl'on& bIOCkg)-C.5)

fraire fract:.~r - 2.-f~.a , .aeU fa ~b
.ff- ypeeq.2:frame time - f.abeo (8

.ype.eq.3, frame time - f.abe. 262
:cC tjMe - frame !frac* Ior *frame t ime

frame si ze - xoc abl8 oa iae.()*

'1frame size .. t.b. ocks per record) thnt.

D.OCKS_tc_read

blocira_to_ read - nocsper_recoro
and If

01159
C'jocS_tc read -frame-aize

-.. ro.jt he wtch get th acre atartirrg time andaeaItte

i. t that time. -he roitine &.so deter ries 'ne total numbner of
r ocN!, to be read from the Input f.'Is.

Ca>- XKpper(rnp.tchanne.,aamnp.es _per _ input bOCKs.>abe&,,

APPENDIX B

_%%

30 APPENDIXK B
i &-eDeO.Oc~s _per _recorc,c d~enet.~ I.,

* ~ ~ ~ , t fey.o.me,?e,:no~a o~cS,.OCtff
*frame time,!re: :!ona- .oCoo,,iner o channe~s)

~ ..- teusrt hoe o u~rofoao7sto put 7r.tc

i Chnnes tc~process~proces~yaropnotes,S-ft _ fleg,wf.ae,

:.ft.e neader to ref7.*eo chnanges.

2 7.aoe e .e.thr.

--- * KAC ,re ",@ recoro &'-ie 11 tne teeder ls ar integra. nimber c.

-&Dne. - :.Aoe. oaestros'.de ocrnes
.. tr.oc;..aDo. 2 --. 6.r.Z.e.2-5

:.ate. -. - annes tprocess
2 .. aoe. 3 e. 2aoe. p3- -

-- Sorn the process vector

1: .. srtnels to process-?:
- ~.:. care~s_ c _process

.!pocs- I7t.procass(xl tner

%roCC (5 - proceSS
procepr- cesC:

etc c dOc

* .cranes.process
K -. processV, - I.
C.&oe. 7.- store o-are. vl
csabe .. * ctor e -1.abe. (K-7

a ;2lcr.enes ,c _process. .

end C3

0: , . ~rrjer_^fc-)arne's
(sx.er .Prncesswv~ln.'
se.eco: MasK .- 7

e,5
sk.EIZ! oras'

a-vt

etc 3o-

..... ..0 t ~ t.. ..

- eidsx crianne7. o.;'-.a.header, P
ci(055iranne. _Oit

ra re'-'..e (1 1yts -- 2 l:

S,. *ttsSnnf -D2 es -'tC n ,C!D r 0.005n

-ea f.oat o.0C:S ',C reac
* tocSa per reccrC

-,e.2v f .ooZer c! oytes .0 nee-- ' . tc.e
Se* :- -S.Ze of tre :p.-veoco: f -e tra'e 'ore a

tS p- :'.t .o0s - .sDe.ot
C 5* 2.. sss

a a C irs' efa - '- -. # . 'er. Sf

a'- te r

Al !X

APPENDIX B

AL A

APPENDIX B 31
A float(blocks-to_read)) *0.5)

quit flag - 0
QuIt flag2 - C
Irec - 1
raw bytea - 0
Call reader(biocks to read,bytesper block,disk,rawbyte,
& quit-flag, Jrec, lbli, nblocks, quit ?flag2, input channel, -

f disk Input channel, blocks per set)
call transfer statua(alabel,oldtlm*,newtime,
&c'~nnls to process, number of channels. process,
A hydrophones,frames to read)
if)QUit f lag?.eq. 1)g Oo 102
If (quit flag2.eq.2) go to 43

C-No.~ throw out any channels we don't want and write the resulting data

to the output disk file. (watch out for multiplexed or dezrultIplexed -

data;

49 lfje~tfa~sto read)go to 102
if (selector mask (i) .e.0(thr

do 1-1, consecutive channel bytes
output data)~ - raw byte data (i)

if(i.gt.raw bytes)thon V
If (quit flag.eq.l)go to 43
raw oytis - C

calredr~lcktread,bytes per block,disk, -

raw bytes,quit flag,j ieC, Iblk. nblocki,quit flag2,
Input channe.,dlsk input channe l,blocksyper set)

, rec -7Jrec +
n~recm- nrecc- records per read
if (o(nr, C.q.Q.0)then

call transfer status(alabel,oldtime,newtime,
channels to_ process, nurberofchannels,process,
hydirophones, frames to read) -

end if
I1-
if (quit flaC2.*q.l~qo to 102
if(zu-ltfag2.eq.2)go to 43

end if
if(j.gt.fin)then

43 oblocks - (1/512)
call output (disk channel -out, otype,oblocks,tbiocks)
if (quit fiag.eq.l)go to 102

end if
end do

else
1 1 + consecutive_channel bytes

If (..gt.raw bytes~then
raw bytes - 0
callT reader (blocks to read, bytesper block, disk, raw bytes,

£quit fl ag,jrec,iblk,n blocks,quit flag2,input channe'l, w
di sc input channel,blocks_per_set)
jrec - IreE - 1
nrec - nrec - records per read
If)mod(nrec,lC.).*q.6.0)then

call transfer status(alabel,oldtime~newtrce,
channels to process,numberofchannels,process,
hydrophonies,fraces-to-read)

end if
If (quit flag2.eq.1(go to 102

if(quit flag2.eq.2(go to 43
if (i.gt.raw byt*S)go to 50 so

end if
end If

lf(c.gt.number of channels~k -

C-- Update program status on terminal
CI%

go to 49

T-- :f wlidcard process next file - otherwise let user choose to
* Process another or exit. Also close the input disk file.

1^2 itime - itime 4 1

call dbclose (disk input channel)

end if
I f(ctype.*q. 'VlthenII

-cse output file, but first calculate the number off records In the
fie and rewrite the header blocK

ilabel (3) -tblocks * llabel (1) / ilabe; (2) J

APPENDIX B

% e % P.
e p 1 r 4. q -w

32 APPENDIX B
ca.. ODw::te disk charne. out,raw_header ,lerr, C;

ca.. CDwalt (a5... cFanne Ou t;
ca'. OC.ioeS0dISK_channel _o'u

e-se
C:ose (unit-2)

enc i
Sw: acaro) then

go tc :0
e'se

oefault - N'
another - getyn(

6 * o yo. want to process another file?,
* Defau.t is to exi: the program.*,

& oefa..A
if another) go to 19

end if

-- :*S-U.
t

tape if one was uaec.

% :: (C s .e, lt her.
write(5, D amounting Tape-

masK . amtSzr nounloaostatujs - sys i:s.rnou (chart, %vai (mass;
" .not.status; calj _ioSstop(%va (status))

eno i
stop
e no

subroutine check(osb, :pos)

Trs routine checks the status word of tne lost (lo status buffer)
L o.ffer returnee oy syster ca-is and aoorts the prograr If proOlems occur.

:ineger*2 lOs5(4)

Af(los().ne. 'I then
type-,- error in syste ca_2 a, posatIon',1pos
doo -:,4

typel0:,I,.osb()
: C fcrmat(sx,'text _IosD(', 2,

'
) - ,is;

enddo
stop

endl f
return
end

B2 - Listing of Data Output Routine

C...
C Subroutine NAME: OUTPUT
...

C
C Written by:
C Josepr B. Farrel'
C DREA
C 15 Feb. :986
C
C Latest revision: 7 Aug. '986

subroutine output (output _channe1, 1f letype, olocks, tDIOCKs)
C

This routine writes sorted output data into a disk flie using
the DBMT routines from NRL.

dyte outputdata (1'024C)

character filetype

integer-4 Obiocks
Integer*4 output channel
integer*4 tblocki

common /odata/ou:putdata
tblocks - tblocks - oblocks

C ...
C-- Write the sorted output data to the disk file.

if (filetype.eq. 'V .or.filetype.eq. v')ther.
call dbwrite (outputchannel,o'otpu _data,oblocksI
call dbwaalt(output channel)

else
write(2) (output_ ata (lx),ix-l, (512*ooocks))

end if

APPENDIX B

-f" - -ft -. '. .-t -ft 'ft 4.ft"ft -ft.. . ft
%% ~ .10 %t .%t %tt &tfff~tf~tf~ttt *% %--"--.t'.-.-. 't

APPENDIX B 33
return

B3 - Listing of Mag-Tape File Open Routine "MTFILE"
............... , t. ** *

Subroutine NAME: MTFILE "-

C..........................

Written by:
C D. Vance Crowe & Joseph B. Farrell
c DREA
C 12 Mar. 1986

Latest revision: 15 Mar. 1986

SUBROUTINE MTFILE(input channel, header, ifile, wfile, Itime,
verify,start_ffle,stop_file)-P

Z Tnis subroutine opens a DREA data file from mag tape.

--- Farameter and internal variable declarations.

IMPLICIT INTEGER-4 (a-z)

PARAMETER MSG-5 %

BYTE IC0 !Null byte - Null character
BYTE buffer(512) !Raw header data
BYTE header(512) !Raw header data

CHARACTER-8C label !File name labels.
CHARACTER chan6 !Used in mag tape channel
CHARACTER default'l !User input default
CHARACTER help(msg) 80 !User help prompts
CHARACTER iflle*64 !Input filename
CKARACTER Icnull !Null byte - Null character
CHARACTER prompt (msg) 80 !User prompts
CHARACTER tape!mark (10) Checks tape marks
CHARACTER tapename (10) !Header filename
CHARACTER-12 VOLI HDRl !VOL:, HDRI and EOFI labels
CHARACTER wfile64 !working file name

IN'TEGER-2 file count
INTEGER2 input channel !Input channel for tape ,J.
INTEG-ER*2 text losb(4) !Status buffer r_%
INTEGER-2 iskip !skip count%
INTE5ER"2 start file
IN'TEGER"2 stop Ile %

INrEGER what _to do optlor. flag for file search

LOGICAL end of tape !Eno of tape indicator
LOGICAL correct flie !File flag
LOGICAL getyn !User response function
LOGICAL skip !Skip file flag
LOGICAL verify

equivalence tape name(:),buffer(5))
equivalence label,buffer(1)
equivalence (IcC,icnull)

common /io_statistics/Jrec,nrec

external loS skipfile,ios readvblk,ioS_skiprecord,ioS rewInd 7

Data VCLIHDR1/'VOLlHDRIEOF1*/, CO/C,, what todo/-i!

-- 'ate for user interface.

data (prompt(i),i-l,mag)/
6' Enter name for the input datafile.1,
&I Want to pass over this file?(-l-y/0o-only/1-no/2-rewind)',
&' Enter a name for the Disk output file.',
6' How many data frames do you want to read?',
6' Should the output file be Vex (V) or READRT (R) format?'/

data (help(i),i-1,msg)/
6' File name: UNIT or STRUCTURE:NAME.EXTENSION',
6' -1-pass flle&look at next/C-correct/i-use file/2-rewind.',
a Default name will be the same as the inp.t filename.',
a' Frames to read from the input fIle.', -

()V) format compatible wltr. DISPVAX, SASPEC, etc.,/

data !file/'msa0:q38334.dat'/ 0
chan-' '//ifile(i:5)

APPENDIX B

% %,- %

_a

.' .- .'... .., ,. -- ,,. .. ,., " .

34 APPENDIX B

If ltlme.eG.: then.
file count - C
cal- gettap(chan) p

--- ASSIgn a enannel to the mag tape

status-sysSasslgn(char, Input channel,,)
.c!.no.status)call 2ibSstcp(4va (status))

end If

If(file co.4nt.g-.stcp_fje)s~op 'Al- files processed.'

-- Reac the R*--- header (Intl. flename; fror. ape into 'buffer'

- C lerror - D
satus-sysS$:ow(,%val(irp,;utcnannel),:cS_readvblk,text iost,,

- , %ref (Duffer) ,%val (5:2;,,,,)
:.no:.status) call ilbSstop(%val (status))

:f .not.status.or.text_ ioso(2).e.C)then :there was an error
lerror - !

if(text_ 1os(2).ne.) Othen !there was a tape read error
else !or there was an ECO
end if

end -.

:ftierror.EQ.l) Go to IC !Try again

Itype - INDEX) VOZIHDR1, labelC(:3))
:f()type.Eq.O)then

(ItIlme.eq.-)then
IsKIr - -2 'Proboly a data record - go baCK to file start

e.se
!sxp - '2 :Probably a uata record - Qc anead to file s:

end --
end if
:f(Itype.oE.l) Go to Hif :VOL label, read next header
3f(Itype.Eq.5) Go to :50 'hDR lanel, check names etc
:f(Itype.Eq.9) Iskip - -I 'EOF label, skip forward I EOF

'Skipping fIle marks

status-sysSglow(,%val(inputchannel),lo$_skipflle,
- text Iost,,, %val (Isklp,,,,..

if (nt.status)call llbSstop(%val(status))
cal check(text_iost,-3)

Go to 11CS... °

C--- Cneck to see if we've reached the end of this tape (FIename all 0's)

15: end of tape - .true.
do T --:,Ic

If (tape name(,) .he. Icnull) then
enc o! tape - .false.

endif
end do

if (end oftape) then
type', Enc of tape encountered, Rewinding.'

Rew:nd tape;...
status-sys$qlow,%vailnputctatse.),ao$ rewinc,text -cso,,,,,,,..If).not.statuscah liolstop'%va.;statusfl

what to ao - --
Gc t :IC !e-., :v volune labels

end If

-- :f not at end of the tape, cne:. i see if we're picking a
C --- numbered file. :f we are, pos.t:r t',e tape to that file.

If(start fIe.;t2.and.3:Ine.e.. t:en
isk-p-- 3 * (start_fIle - 2
file count - :
type7,' S~ippIng to next -:.e.,
So to 120

end If
If (stafrtfIe.eQ..anc.it '-.eu . Ee count *

C--- See if we're reading tne corre , ,. (wtccaros aClowedl

correct file - .true.
S.......................................

C --- :f we're doing n;rJberec fLe , it 2 t- nave to cheeo toe f:.ena!e.

If(start fIle.ne.C - : ,'
- :ndex ifile, . -

periodflag -
n ane_ lengt - .er.2 %
do 1 - I, 1, 1.

12 -!ch a rlfl e
S............................

- nece for w.:ccarc ''% cc, - - .e-a.e

If)l .e.4C;tre

--- Conpare np.* anc tape f-le - : er "f no'

APPENDIX B

#S
..#' '; ','. ',% ':' .,, ., - -, - .., . -.. ..- .. . , -. -... .'., .-. -.. ..- , -.. "--.-, .., , ,.' . .,. -.,

- 4.10xiM -VMW " WW msr K tM1 f JfEVM"WWsty- ms1Vrr.w rr rat9.

APPENDIX B 35
C

il-ichartpe name~i))
if (il.ne.i2) then

correct file - .false.
go to 71

el nd if

C ..
C-.-- If we got a wildcard character, look for '.' if period flag - 0.
C

if (period flag.eQ.0)then
do whire (ichar(tape_name(i)).ne.46.and.

end do
i - I-I
period-flag - 1

else
C ..
C--- If we've already passed the I.' then filename Is assumed correct.

go to 20
end if

end if
- I+ I
if(j.gt.namelength)go to 20

end do
C If this was the correct file, indicate success and proceed.

if (correct file) than
20 do k - 1,lndex(ifile,':')

wfile(k:k) - ifile(k:k)
end do
do k - 1,10

J-k* index(ifile,':')
wfile(j:j(- tape name (k)

end do
type-,- file -,wfile(6:25),' found'

goto 220
end if

C ...
C --- If it's not the right file, skip to the next one (giving the ue
C --- the option of processing the file which has been found).

21 continue
if(verify)then

type-,'* Found file: 'tape name
If (what -to do.Eq. -1) Then-!Ask the question the first time
call inputT(prompt (2) ,what-to-dO,help(2))
Endif

else
what-to-do - 0

end if
If (what to do .Eq. 0) Go to 180 !Find the correct file
If (what to do .Eq. 1) Go to 190 !Ulse this file as correct one
If (what to do .Eq. 2) Go to 360 !Rewind tape.
If (what to do .Ne.-I) Then

Type ,'Assume you want to skip to next file.'
endif

IS0 iskip -+3
type*,,' Skipping to next file.'

Go to 120 !Skip forward 3 file marks.
C
C The user wants this file that he/she found.
190 do k - l,index(ifile,':')

wfile(k:k) - ifile(k:k)
endwdo
do k - 1,20

wtile(j:j(- tape name (k)
end do
go to 220

C ..
C --- Skip over file mark to the beginning of the drea header data
C
220 status-syssqiow (, 'val (input channel), io$_skiprecord,

1 text iosb.,,%tval(1),,,,,)
if(.not~status)call lIbSstop(%val (status))

C ..
C --- We're finally In position, so read In the DREA header
C

status-sys~qiow(, %val (input channel), io$-readvblk,textiosb,,
1 tref (buffer),Fival (512),,,,)T

if(.not.status)call lib~stop(tvai (status))
0 Type -, * finished reading drea header'

call check (textiosk,,-5)
C
C..
C C--- At this point, we've read in the header from tape.
C

file count - file count + 1
DO 310 11-2,522

310 header(ii)-buffer(ii(

APPENDIX B

%i ~. , % % t

36 APPENDIX B
C

RELTURN

END

B4 - Routine to Allocate and Mount Mag-Tape

C Subroutine NAME: GETAP
1C.

C
C Written by:

Jo.eph B. Farrell
c DREA

15 May. 1906

C Latest revision: 7 Aug. :986

subroutine gettap(chan)

structure /itmlst/
union
map
INTEGER*2 buflen
INTEGER12 code
INTEGER*4 bufadr
INTEGER*4 endlst

end map
map
INTEGER*4 end list

end map
end union

end structure

record litmlst/ mnt list (3)
include (S.mntdef)
include (Sdmtdef)'
include ' (Sssdef)'

CHARACTER chan6 'ised m. tape uhannel
NITEGER14 mask I0
INTEGER*4 status
INTEGERe4 sysSmount
INTEGER'4 sysSalloc

S..
C --- Allocate and mount the ma; tape.
C

status - sysSalloc(chan,,,,)
C
C --- If tape Is already mounted SKIP MO,;ntlng SeCtIon.C

if (status. eq. ssS_devmount) : ner,
type*, 'Tape is already mrou.rec - assmr. yo. i ; :t.
go to I0

ernd if
if (status.eq.ss$_devalloc)tne-

write(5,
°)'

Error - device probat.y a..ca:c a not-er se:'
stop

end if
If (S tatus.eq.ssS evalra:!oc:her.

wrI'te(5, ;D-ev'ce already allocated :o yo..,
end If
mask -C
mask - mntft foreign .or. rwntSir.mesxa2e o-'. irx5rnoass~st

mnt list ().buflen - 6
mnt list (i).code - mntS devnar
mnt -ist (1) .b,;fadr - %15c(cha-n
mnt list (';.endlst - C
mnt list (2) .bufiet - 4
mnt list (2).code - mntS flags
mnt list (2).bufadr - %loc(mask
mnt list (2).endlst - C
m nt-list (3) .end-list - C

status - sysSmour timnt list
If(.not.status)cal. llSstop %va. stal s
continue
ret urn* cono l~
*no

B5 - Channel Selection Subroutine

.

APPENDIX B

d . *P of w* -F -r e **E~~*.'.

S-' OL".;N %A..L: -*.l- e ,~e-

APPENDIX B 37

Wrtten. by:
Joseph a. Farr*::

DRLA
27 Feb. 1984

Latest revislor: I Jt;'. 1906

71hla subroutine, chooses which of the channels In an RT-1: or VAX
forrtat data file are to be processed. It uses the GE-VEC subroutine
-rtter oy D)oug Peters (ASP Sumer Student, to read a, vector from th
iser's terrina.

S :3k7:7NE CALLS:
I) INPU: - Routine wtich roads at. Integer fo

terilna.
21 GE-VtEC Rout~ne whict. reads a vector fror the 7.

tezw.1na. .l.
3 : WA:7 - Waits for a specified amount of time. p.
4; Erase screen Clears the terminal screen.%~.Set cursor -Moves the cursor tc a specified :ocation

MAIN CODE

subroutlne channe._se.*ct- (o.aoel, number of cnannels, outspec, Itime,
A ch~o~anne.s to ;r ooess,process,.nyarophones,sl-ft flag,wfl, t

w..Gcaro, SKtpl 4

- Pararweterad ntra.arae eaato.d

Imp.!ct irnteger-4 (a-il

parameter sg-:

byte blaoe. (12e)

cr.aracter default..
c!"aracter helmsg) *7C
character wt11e@64
character prompt (sg) -7'
character response*3
character string'.2. *

ir.teer*2 cnanre~s 1129)N-
integer*2 origin&. channels (:28)
' rt *gr 2 1tydrophor*A 1. 29)
!nteger*2 new HP
integer*2 nmBer of channels
Intager12 number of hydrophones

Inteer2phones 129)
rnteger*2 origina. phones (128)

irlteger?2 process (. 2 8
:-tegerl sift-flag

integer-4 channels to process
!nteger-4 ori~g~na:_channels to process

teger-4 cK channel
Inee4flnisF "

Integer-4 'flag
Itger-4 lp

L=CAL aA flag
L=:COk (T28)
:Ax: CALoutapec

:=1ICA. preservephones
U 1CLproceed S

i=IAI. wildoard

real4 val (1281

:a,.& for user interface. 5

cata (prompt(Il-)l,msg)/ 5%

4' How many channels do yow want to process? ifor all)-/.

data (help(1),1-,MSOG)/
i, Enter thio flr~er of channels to process.,/

.ar~able rntali1ton

number of hydrophones - C
now HP-- !'

:!Tin~e.rotse~l _fa FAL.SE. J

-n~rrlre ?o. cnanne.s corta~r acoustic data. Coj:*ct the
rydrophone numoers anC corresponding channels.

APPENDIX B

38 APPENDIX B
x - J12
If (blabe.l(i .go. O)then.

nwriber of! hydropnones - number of hydrophones + I
channeTs (number of hydrophones) - k
phones (number oT hydrophones) - blabel Ci)

end if
end do

-- must De at least one hydrophone in the file.

if (number -of hydrophones .lt. 1)

s t op 'Channe,_select - no acoustic data found in file.'

if (.not .outspec.and. itime.eq.1.and.wl-idcard) then
defaulte IV
p reserve _phone& - getyn)

6 Select the same H/P MY or channels MN from each file?',
& DefaulIt will select tne same H/P fromr each input file.',
4 default)
end if

:f i:ime > I compare hydrophones with those from the original file
-- and write out a warning if the chosen ones differ.

C
If (. not.outspec. and. it il..gt.1)then

missIng-flag - 0

1-
..... o.....roug. the ava.iablepnones to see if the desired ones are
--- there.

do -1, original -channels to~process
do k - !,nrumber of_hydrophones

If (phiones (s).eq.original phones (j) then

Z-- Use the process vector to point at the location of the desired
-- H/P if we're keying on H/P.

If (preserve phones) then
process(Th - k
I - I -

end if
go to7

end if
end do

C-- Set a flag to' idicate H/P missn if wecCidoe

missing flag -

* con.tinue
* end do

:- f therre e HPisnOwieawrigadltheurdcide
-wnat to do.

if (missing flag.eq.l)then
call erase screen(l,l)
call set-cUrsor(2,I)
call vtmess('re1,1c*, Channel Setup
type 1OOO,wfile

ICIformat(' Working on file: 1,A20)
* type*,' The h/p available differ from the originals.,

type *' OLD: 1,(originalphones(jj(,Jj-1,
* S original_channels to process)

type *, NEW: ',(phones (j),IJ-2,
S number of hydrophones)

if (. peserve-phones)then
tye' You are keying on channels rather thar phlones

& 'so I am proceeding.'
call wait(1O ::31,5)

end if

C-- If we're preserving a set of H/P betwen files,
C --- Option to proceed with the found subset of H/P or to SK.p fie.

if)preservephones) then
proceed - .false.
if(l.gt.l)then

default - IYI
* proceed - getyn)
* 'Proceed using the subset of requested nons found?',

'Re-specify H/P or skip this file if rep-y
& default)

end if
C ..
C--- if the user chose not to proceed with the subset fo.;nI,
C --- the option on re-specifying the H/P or of skipping thF f.
C

APPENDIX B

W 0-W e W 10 el% -.

APPENDIX B 39
ift.not .proceed)then

default - I
proceed - getyn(~Skip to the next tile in the input st?',
'Default is to request a new set of HIP to process.',
default)
if (proceed)then

skip - I
ret urn

else
new HP - 1

go to S
and If

end if
end if

C ...
:rwre usIng tne subset, continue processing.

C
end If

C --- 1f we're keying on channels rather than H/P Make Surew hav
I-- enough channel&.

IfC. not. preeervsaphones) then

C-- Only do It If we're not proceasing all channels Inth fie

if).not.all flg)then
k-1
do ' -, riginal chanAels to process 0

C-Check to se" If a requested channel is > than the I ehae
C%

If (original channels)j) .gt.nnrber ofhydrophonea)then%
type*, You asked for a channel not found in the',

Input file.'
C

1"L chne u f range, user can skip file or proed

default - 'Y'
proceed - getyn)
'SKIp to the next file In the input set?',

& 'Otherwise use this file with reduced # of Chans.',
default)
if~proceed)then

skip - I
return
I end If0

type*,' Proceding with reduced 0 of channels.'e~
process)k) - original channeloj)
k -kl

end if
end do

channels -to-process - k-
end if

end if
end if '
lf~a11_flag) than

channels -toprocess -number of channels
go to 5

end If

-Clear tesreanwrtahedrmesae

if)itime.eq.l.or.outspec)then

a call erase screen)1,l)
call set cursor(2,l)
call vtmiess)'re-, 'c*, Channel Setup 1

type 1, number of channels
format(, l,t3,

T
T1~sre arel,13,1' channels in the Input file.')

type 2, (channes~i),i-,numberofhydrophones)
2 format)' ',t3,1' The following sre acoustic channels: '

type 3, (phones~i),i-l,number of hydrophones)
3 format(' ',t3, ' The corresponlain-g H/P numbers are: '

channels to process -- a,
4 call inputiTprompt)1),channeis toprocess,help)f

end if a

C --- S.:et faindiatng l channels to be processed for subsqut
C --- files ifg necegsary.

if)ltime.eq.1.or.newHP.eq.l .or.outspec)then
if (channels to prOCeSS.eq.-l)then

APPENDIX B
a'OR

I er %

40) APPENDIX B
al1 flag - .TRUE.
cnannels_ to process - number of channels

end If
orIginal chanhels toprocess - channels toJprocess

end If

- -- User most choose hydrophones >- I and <- number available

6 if (channels -to-Process .it. I .or.
& channels -to-Process agt. number-of_channels) then

type 3500
*35C-. format(/' channel select - illegal number of channels to',

4 . process chosen.,/)
* cill wait)'C ::2',5)

cal' erase screen)5,l)
go to 4

L- oad al. H/P, channels and gains if all are to be analyzed.

else If (channels to process .eq. number of._channels) then
do 40C 1-1. number of channels

process(l) - I
hydrophones)I.) - phones (l)
.f)itim*.eq.1)then

origirnalphones(l) - phones(i)
original channels Ci) - process~i)

end) If
41 continue

return
end if

C- .. o Ientify individual h/P if a subset of the total achsn

If ltlme.eq.1.or.newHP.eq.1.or.outspec) then
type 4000

400C format(/' ,t3,1 Enter the channels you wish to study S
call getvec)val,ok, channels to process)
if (06)1)) then

do J-l, channel1s toprocess
process)j)-int (val)j))

end do
V C..

C --- Set flag to indicate that a channel(s) must be removed from data.

sift flag - I
alse

type ' channel select - sorry, no default.--))
a Call wait(10 ::21,)

call erase screen(5,l)
go to 4

end If
end if

do j-l,channe~ to~rocess
hydrophones)) - phones (process)j))
if)itime.eq.1)then

original phones)j) - phones)p.ocess (l))

o riginal channelsj) - process))
end if

end do0
ret urn
end

B6 - Routine For Choosing Data Segment To Be Transferred
...

SUBROUTINE NAM4E: SKIPPER
...

C
C Written by:

Joseph B. Farrell
C OREA
C 14 Feb. 1986

C Latest revision: 23 May. 1986

C This program uses the header to determine the starting time cf sr.
C Input file, asks the user to entet a desired start time, and then r! eps
C into the file the desired amount.

C................++.............................

MUIN CODE
C +,.,.............................

* C
subroutine skipper (input char,points~e~lcsmln frequency,
1alabel,blocks per record,oldtime,netlie,disk,disk start block,
I fie type,outipec, itim*,totsl blocks,block time, frame tin..,

C --- Parameter and Internal variable declarations.

APPENDIX B

%

%% % m

APPENDIX B 41
C

IMPLICIT INTEGER*4 (a-z)

PARAMETER msg-2

CHARACTER alabel
°

32C
CHARACTER default%"
CHARACTER help (nag) *70
CHARACTER newt ie'8
CHARACTER oldt ImeeU
CHARACTER t ranstim i• $',.

CHARACTER prompt (mag) 70
INTEGER blocks:per record

INTEGER blocks to skip
INTEGER-4 disk
INTEGER14 disk start block
INTEGER*2 file-type
INTEGER"2 inputchan ,
INTEGER*4 ±tiMe ,,%
INEGER*2 new time (3)
INTEGER*2 number of-channels l
INTEGER12 redo
INTEGER*2 text io1b(4)
INTEGER* 4 totaT blocks
INTEGER"2 trsns-e time (3)

LOGICAL getyn
LOGICAL newt im
LOGICAL outspec
LOGICAL status

REAL begin_time
REAL block time
REAL fractonal blocKs
REAL frame time
REAL old tTme (3)
REAL poitsyperblock
REAL blocks jer-hour
REAL real skip
REAL sampTl ng frequency
REAL t spe-t .me
REAL test
REAL time difference

EXTERNAL loSskipfile, lo$_readvblk, lo$_skiprecord, los rewind
C ..
C--- Data for user interface.
C

data prompt(i),i-lmsg)/
' Do you want to begin processing at some other time.,

k Enter the time at which you wish to start.*/

data (help(1},i-l,msg)/ % *0
&' Default Is to start at the tlm shown.', .-I
• Format is HH:IM:SS.'/ 4,

C ..
C --- Variable initializations.
C

rewtim - .false.
oldtime(l:) - alabel(12:19)
newtime(l:) - alabel(12:19)
if (filetype.eq.l)then

blocks per hour - 3600.*sampllngfrequency/ ' !
1 (points_perblock)

bloc) time - 1./blocksper_hour 5%

end if
C ...
C--- Print the file start time on the user's terminal.

newtim - .FALSE.
if(itime.eq. 1.or.outspec)then

call erase screen(l,l)
call setCuraor(2,I)
call vtmess('re,'c',' This file starts at '//alabel(12:19),' ')

C... .. Ip
C--- Let the user determine a start time for data analysis. p
C--- (If NEWTIN is returned as "FALSE" analysis starts at the beginning
C--- of the file.)
C

default - 'N'

end if
if(newtim)then

C ..

C--- Decode the file start time into the vector Old_time.

decode(2,1000,alabel (12:13)(old tim*e()
decode (2, 2001, alabel (15:16))old-time (2)
decode (2, 10CC, alabel (18: 19)) old-time (3)
format (f2.0)

C...

APPENDIX B

% % % % % % %% % % %-%
JL~ "0, #

42 APPENDIX B
- welre changing start times, read ir. the new time and D:ECME"i
in ;to the array New time.

ca. 1nputs~prompt)2 ,newtrm.,help)2,)
Sf)nowt~me.&q.Oldtlme)Qo to
cocode(2,10OC',newtlme)2:2) (new-time)
oecoe2,0C ,newime)4:5((new time 2)
deeode)2,'.DCI,newtime(7:S((h~w~time (3)

* .C format (12)

--- Tape ttImes stto the input file Start time tIr' Geclma~ or)
- - egir._time is set to the processing start time.

tape time - old time()(- (old time)?) / 60.C)
o aOi-timeM3 /3600.0)

Degin tire - float (hew time (lfl)fioat (new tim*)?fl/ 60.3)4
(float (new time(3)) /-3600.0)

time -difference - begintIme - tape time

- Mace sure we Start On a block Which oegina w~tt the first cnanne;
C- !!i we're acing a .DA7 file.

if (fractional blocts.gt.0.OO01)then
do noiocKS Z 2,number of channels

test - float)noloc'ks) ifractional blocks
if)()abs~test) - aos(Ilnt~test))).lt.O.000l)ther

go to 22
end If

end do
eno If

C- CreCK to maxe Sure we aren't moving into the middle of an FFT or
C-- a spectrum' if the file is FPTR or .PWA

if (fle type.ecq.2)call timer~time differenceframe timeredol
if (file_type.eq.3)cal1. timer,(time-dlfference,frame-time,reo)
if~redc.eq.1)go to 21

C -- Determine how many records to skip before beginning processing.
(.'.'!*type-' indicates .DA7. -2 indicates .F'TR, and -3 .PWR)

22 if (flle type.eq.l)then
blloc~a to -skcip - nt (biocksper hour -time difference)

M~ake sure we start oh a block which begins with the first channei
aC-- if we're, doing a .DAT fiie.

24 if~amod~float~blockstoskip),floatnblocks)).eq.
(I 0.)ther

go to 23
else

blocks to skip - blocks to skip - 1
go to 4

end if
*23 real Skip-tape time - (float (blockstoskip)/blocksperhour)

else
blocks to skip - (int~time difference / block time))
realScip-tape time -)f.Oat)blOtkS_to_skip) 7 block time)

end if

I --- Set the start time to the time we're actually going to skip
C - nto the file (We may not be able to skip exactly to the requested
-- time because of the finite record lenght In the Input file).

new time):.) - mnt (real Iskip)
res&T~ skp - real skip-new time('))-6C
ne tme)?) - mt (real Iskip)
reTskip - (rel _skip-new timne(2))-60

new -time)3) - nt (real _skip)

C -- "ENCCDE" the actual start time Into the character sting NEWTIME
-- and display it or the user's terminal.

encod*(2,l0,newime)1:2)) new time(l)
encode)2,1OC1,nwtime(4:5)) new time)
sncod~e)2,'0O1,newtime)7:0)) new time)3)
type*,' Actual start time will-be *,newtime
alabe:G)2:19)-newtime(l:8)

- SK.P Ithe requested number of records

S.1; racos o r tape "f that Is the e~ en sd

If (blocks _to_sKi; .ne. 0) then
typel,blocis to Skip,' physics. blocks will be skipped.'

status-sys qiow),%val hinputchan(,ioSs!~iprecord,textiost,,
%v&I (bloccstO.,Kp

lf).not.st . sC ll libSStOp(%vl~status))
call check~text losb-!!)

APPENDIXK B

APPENDIX B 43
endif

Co o o,.o . .
C l--- Seht block for read• fi sk.
C

disk start block - blocks to skip + 1
typeT,l Dsk start block-will be: ',diskstartblock

end if
call walt('0 ::2',5)
else

Co................... °................. °....°......
-- Control 2umps here if we're going to start at the beginning of the

C file.
C
I disk start block * 1

end if
C o d..a

Now gIve the user the option of specifying the number of records
C--- to be read from the input file or speciflying a time interval.

if (itime.eq.l.or.outspec)then

total blocks - -l
call rnputi(

6 Enter n to X-fer n blocks,-l for all,-2 to specify time',
& total blocks,

* -2 will let you enter a time interval for the transfer.')
if(total blocks.eq.-1)then

total blocks - 100000
else

if (total blocka.eq.-2)then %
trans7time - '00:01:00'2 0 call inputs (,%

& . Enter the length of time of the transfer.',

, transtime, ,
4 Format is HH:MM:SS.')

decode(2,1001,transtime(l:2})transfer time(I)
decode(2,1001,transtime(4:5))transfer-time(2)
decode (2, 1001,transtime (7:8))transfer tmfre (3)
time difference - transfer time(l) + Itransfer time(2) / 60.0) *

1 (transfer time(3) / 3600.1)
if(time ifference.eq.0)then"

type',' You specified a zero-length transfer - try again.' %
go to 20

end if ,
C ...

C-- Check to make sure we're transferring at least a full VFT or spectrum
C

if (file type.eq.2) call timer (time difference,frame time,redo) t "A
If (flle_type.eq.3)call timer(time-difference, frm-time,redo)
if(redo.eq.l)go to 20

total blocks - time difference / block time
if (total blocks.eq.D)then

type , W- RING - you are trying to transfer 0 blocks!',
& 'Try again.'

type,' Transfer time must be at least', I
frame time3600.

go to 70
end if

else
totalblocks - total-blocks * blocks_perrecord

end if
end if
end if
ret urn
end

subroutine timer (timedifference, unitmtime, redo)

IMPLICIT INTEGER*4 (&-z) ,1

INTEGER*2 choose
INTEGER-2 redo

RUAL check
REAL seconds

REL time differenceREAL unit-time

redo - 0
check - amod(time difference, unit_time)

seconds - unit time - 3600.
if (check.ne.O.(then

type*,' You are not using an integral number of records.'
choose - 1
call inputi(

6 Type 1 to take closest record start, 2 to re-specify time',
choose,

Closest may be earlier or later than the chosen time.')

if (choose.eq.1) thentime difference - anint (timedifference / unittime)unit-t ime

else

APPENDIX B %JON

s .P
X..

44 APPENDIX B
type, Tim difference mu~st Do a mwitiple of * secOnos,

6 eonds.,
* redo-
and If

end If'
let urn
end

B7 - Routine to Decode Switches in Filenamne

C..
SUBROUTINE NAME: S3hITCHES

Written b :
Joseph B. Farrell

- DREA
C 3 Jul.. 1986

* C
C Latest revision: 3 Jul. 1986

C
C This subroutine picks switches fromn a user Input filensm.

subroutine Switches (tllen~ame,verify,start file,stop file)

*character fillname*64

INTEGER&2 numnber
INTEGER*2 start file
IWCF.0ER*2 stop ?ile
INTEGER-2 start
Ih*TEGER*2 stop

logical verify
C ..
C --- Initialize variables
C

verify - .FALSE.
C ..
C --- Check to see if verify flag is present.
C

start - index) filename ,'/'
d ~if) start .no. 0) verify - .TRUE.

C..
C --- Look for a START flag , and If present decode the starting file
C --- n~umber.
C

start - Index (filename , '/START-'
* If (start .no. 0) then

Start St strt + 7
*Stop -Index(filename~start:) , /

if (atop .eq. 0) then
stop - lon2 (filename)
number - stop - (start-i)

else
stop - start + stop - 2
number - stop - (start-i)

end if
decode (number, 100, filename (start:stop)) start file

:00 format) 12)
C ..

C-- Look for a STOP flag , and if present decode the stopping file
C --- number.

start - index (filename , '/STOP-'
if (start .ne. 0) then

start t strt + 6
st op ,,idex) filename (start.)
if- (stop .eq. 0) then

stop - lon2 (filenam)
number - stop - (start -1)

else
stop - start + stop - 2
number - stop - (start -1)

end if
decode (number, 100, filename (start:stop() stop-file

alse
stop file - start-file

end If
end if

C --- Look for switch mark and remove all switches from the filename.
C

start - index (filename , *1
if (start ne. 0) then

filename(start:len2 (filename))-
end if
return

APPENDIX B

e;~~. W~I'%*I'a** ~I ~~ S'~I.,~~%.*d. .. % .%./.~.:.fP
5

*.- ~... . ' "-r
'I .

APPENDIX B 45
end

B8.- Routine to Determine Wildcard File List

Subroutine NAMEt: Disk Wildcard

Written by: 0

C Joseph B. Farrell
C DREA

10 Jul. 1986

C Latest revision.: 7 Aug. 1986

z~broutine diax wildcaro(lfile, ltime,wflle)

CHAR&CTER string*60 .
CHARACTER If~le'64.
C ARACTER wflle*64

INTEGER14 dcv flag NIP
NEGER14 Itime

....
z -- D a d'rectory usIng the Input filspecs of Ifile (first time only). 6J

It ime.eg.1) then
string-'dir/siz/co:/ou:transfer.tmp '/Iifile%
lstatus-libSspawn(%dscr(string(l:len2(stringf)))
ift.not.istatus~call libSstop(%val(istatus))

Read garbage fror the directory file

open(nt-V?-,tatus-old',fii.-'transfer.tmp,form-formatted',
carriagecontrol-'l1st')

react G ,) skip empty line
read (17,) skip dir name line

read (I,*) Iskip empty line 7

.11 format (215'1) -
if (string(l:1) .eq.' *)go to 10
dev flag -indlex(Ifile, ':')
dc 7 - I dev flag

end do
co - 1. (Indez (string,'; '(-1)

k - I-dev flag
wfill(k:k) - string(j:j)

end do
ret ur
st op'No more files Match the Input spec.'
end '

B9 - Routine for Data Input from File
....

C Subroutine NAME: READER % 7.

C Written by:
C Joseph B. Farrell

C DREA
C 25 Aug. 1986

Latest revision: 3t Aug. 1986

sbroutine zeader(blocks_tO_read,bytes per _blocK~disk~raw bytes, *7

& qult f~ag, lrec, Ibk, nblocks,quit flag2, inpUt channel,
L disk ±npUtchannelI,blocks per set)

:MPLIC:7 ZNTECEP*4 Ia-zi

byte raw byte data (50000) %-

I nt oger*4 bloCks to read..%
lnteger-4 %~cstosi
.n -eger*2 bytes per olock.%

rtger*4 dsk%
Integer*2 Input channel-t.
Integer*4 d~sk Input -channe.
lntg"r,41 ra-yts-5
'nteger*2 te t:1(D41
'nteger-4 itfa

APPENDIX B

%
%

46 APPENDIX B
integer*4 quit flag?
integer-4 Irec
integer*4 iblk
integer-4 nblocks

conmmon /,:5w/raw byte-data

external io$_skipfile,io$ readvblk,ioS_skiprecord,ioS_rewind

if(jrec.eq.1) parity count -0

if (disk.ne.l) the~n
C

C-Read from-?agtape.:

do i - '-,blocks to read
parity -flag C
mov - (i-1) *bytes per-block I

92 status-sys$qiow(,Wvaliinput channel) ,io$_readvblk, f
text iosb,,
Pdre-f{raw byte data(Mov)) ,tval (bytes per_block),...,

Cneck to see it there was an error on the tape read.

if(.not.status.or.textiosb(2) .eg.0)then
frames-stored - irec -1

cal 1,set cursor(21,.
if (text iosb(4(.ne.2.and.text_iosb(4)

6 ne.10 Fhen
parity_count - parity count - 1%

C-- If parity error or. the fist record s-*'no h afl until we gt
C-to the next block which begins with the first channel, then begin.

_ -
lf(jrec.eq.land.i.le.biocksp;er_set~then

type',1 Error reading first record!!'
blocks to skip - blocks per set - I
lf(olockSs tc skip.ne.'Z)then

statu.ZsyaiSqiow (, Oval (Input_channel) ,
6 ioS skiprecord,text_iost,,,

t val(blocks to sklp))
If(.not.status)call lib~stop(lkva2 (status))

end if
go to 92

end If%
type*, ' Error reading record': Error count-,,

& parity count

C-- :f a parity error occurs on a record , go back and reread the last
g- ooc z~ocx cf data whict, begins with the correct channel.

parity flag - parity flag + I I
blocks to skip - - (blocks per set + 1
status-sysSqlow (, tvaI(input channel),

6 ~ ~ 1oS skIlprecord,tex: iosb,,
%v l(blocks -to skip),

If (.not.statasJ call .lb~stop(%va (statuS))
go to 92

else
type', 'End of file encountered.'
if (raw oyres.ne.C~then.

quit-flag -1
re turn

end If
end If

typel,'SavIng ',fraines stored,1 frames and exiting. '

quit flag2 - I
retu~rn

endf
.awytes - raw bytes - bytes Per Clock

If (pa rIty f~ag. nei. 0 t1her
tlocxs tO sxIp - party flag 0, 006s peSo-
status-sys3qiow(,tval input channel:;,
1 0S SKlprecor1, textIoso,,, 6
%vaT (blocks _to_SkIp),,.,..

If.o.Sta-.Us)call IlbSstop(%val(statuS))

",e:, to see if the next real will put as past the and c.f the l.
.-- e -is --c ac".unt for the fact that DBREAL counts fror C rather

*-f Peme'r-ber that we taver't read b1OCK lbk yet.!

-f D , oocxstcread.gt. (nblocks-l((:her

:f -- ee O:t of data, dump what we've collected, or simply close
-. e..s .08i we e no data tt dum-p.

Wf~tel',' 'PeaO pUtS US past EOF. bleS to read.',r'lOCKS tCread

APPENDIX B

% %.

APPENDIX B 47
write(5,*)'iblk & nblksl,iblk, nblocks

blocks to read - nblocks - iblk
wrlte(5,*) 'New-blks to read1,Blocks toreadpause

type*,* End of file encountered.'
if (blocks to read.gt.O)then

raw byte! - blocks toread * bytesper block
quit flag - 1 N

go to 33

if(j.ne.l) quit_flag2 - 2
return

end if
else

C ...

C-- Read from Disk file.
C

raw bytes - blocks to read * bytes per block
33 call dbread(disk input- channel,rawbyte data,blockstcread,

& ierror,iblk)
if(ierror.ne.O)then

type, 'Error encountered on disk read.'
type, 'Saving what I can and exiting.' ' 4
quit flag2 - 1

return
end if aY
iblk-iblk-blocks to read
call dbwait(diskinput_channel)

end if
end .1f
return
end

B1O - Transfer Status Routine
~CC

C Suroutine : TRANSFERSTATUS

C Created : Suner, 1982 by U.Vic Physics Co-op student Laurie Bunch

C Major Modifications : Spring, 1986 by Joe Farrell - Deep Water Acoustics

C Purpose : To display to the user the major parameters in the %
Surveillance Acoustics TRANSFER program during execution.c

C Called by : TRANSFER
C'4. ..,
- Calls 1) DATETIME - Subroutine which obtains the system date

and time in an ASCII format. • .

- 3) ERASE-SCREEN - Subroutine which erases the screen from
the specified position to the end.

C 4) SET_CURSOR- Subroutine which sets the cursor to a
C specified position on the terminal screen.
C 5) FORSSECNDS - Fortran library routine which aetermines

the number of seconds dif'erence between
the number specified and tne uurrent time.

C 6) COMPRESS - Subroutine which compresses the chosen
C channels into a format suitahle for display.

--- Parameter and variable definitions.

C REQUIRED PARAMETERS:
C CHANNELS CHOSEN - Channels corresponding to the -ydrophones
C chosen for study.
C nrec - Number of input file records processed.
C F:LES - Input and output files.
- HYDRCPHONES CHOSEN - Hydrophones chosen for so:v. -

NUMBER CHOSrN - Number of hydrophones chose7 fcr sljdy.
- nur. er-of frames - Upper limit placed by the Fe: cn the
C number of frames to be proeesec. .

frares procesed - Number of frames whict nave reer processed
AiABEL * ASCI: label from input tape. "
TIME OFFSET - Time In seconds which the user wishes to step I._

C - Into the input data. P
C TOTAL CHANNELS - Total number of channels or. r,, 1.-put file.
C
C ::TERNAL VARIABLES:

AVERAGE TIME per frame - Amount of syste tir(-.D- CPU) that
one ,rame reauen.

C BASE - The number of rows required to pr:rt a. 'a- r
C parameters up tc the channeis cho!:er. %
Z BASE TIME - Time zero when the timer was .% . P.
C DATE AN: TIME - Syste.m date and t1me In r " a- tat. % -.
- DELTA TIME - Time from base time to presen. f .
-)iS TIME OFFSET - Hours, minutes and secc - ce: ,.%,ent of I

the time offset spec, ' ' ; 2ser %
seconds.

APPENDIX B

a. .- %% *.. *.%b %* %°. *-,

* %"

a.a... . 'V -,'"- .- - .--" ". ,'.-- .-. ' . -..

48 APPENDIX B
C--- Main code

SUBROUTINE TRANSFERSTATUS (ALABEL,TIN,TOUT,
* NUMBER CHOSEN,
* TCTAL CAHANNELS,CHANNELS CHOSEN,

HYDROFHONES_CHOSEN, Number of_frames)
C ...
C --- Parameter and internal variable declarations.

CHARACTER-320 AIABEL
CHARACTER DATE AND TIME-20
CHARACTER-64 FILE§(2)-
CHARACTER- 128 OUTVECT
CHARACTER°8 TIN
CHARACTER"e TOUT

IN7 -ER'4 NUMBERCHOSEN !Must be before adjustable array.

:NTEGER-2 CHANNELS CHOSEN(NUM.BER CHOSEN)
:NTEGER"2 HYDROPHO.'ESCHOSEN (NUMBERCHOSEN)
INTEGER'2 NELS
INTEO ER 2 total channels

IN TE=ER4 BASE
:NTEaER4 framesprocessed
:NTEIER'4 numoer of frames
I!;TEGER4 FIRST
iNTI-IER'4 WS_TIMEOFFSET(3)

RE.AL- 4 average time_perrecord
RLA:*4 BASE TIMl
REAL'4 DELTA TIME
REAL-4 nrec
R .L'- 4 PERCENT OVERLAP
RE.AL'4 TIME OFFSET

--- i/O files and statistics passed by conuron for ease.

COMMON /:0 STAT:ST:CS/frames processed,nrec
CZOMM ODN /F:LER/FILES
COMMON /OUT/OUTVECT

S...
Otalrn "he current system time.

CALL DATE_T:ME (DATEAND _TIME)
S...
--- :!first ca-l to this subroutine print everything to the termina .

IF (frames_processed .EO. 1) THEN

Print the header.

CALL ERASESCREEN)., 1)
TYPE 10:0
FCPyAT '',T29,' FI LE TRANSFER STAT:STICS')
TYPE i:00, DATE AND TIME

4 FORMAT (',T3.,A)
V TYPE :.2:1

P--- Print tne ASCII -abel and tne input anc output files.

TYPE 201O, ALABEL(65:1IO)
FORMAT (T3, 'ASCII label : 1,A46)
CALL SET CURSOR(5,1)
type 3015 , fIles(2) (1:24)

3'S-' forr'at(/t42,Output file ,A)
type 3001, flles()i (1:24)
forat(',t3,'Input file : ,A)

-- rt the '-me offset In its new form..

TYPE 4C', TIN, TOUT
4"-' FO;LAT {/T.3 'Starts at : ',A, T42, 'Starts at : ',A)
------ -- --- -- --- -- ----- ----- ------------------ ---- --.. - ------- -- ---- ---.

* C--- :f the numJoer cf frames Is Greater than 530CO,then the program is
C--- r'-n'-n til it hits the end of the input file (EO7).

:F (nx.ber of frames .SE. 300) THEN
TYPE 5II' 'TC ElF'

5 [c FCRM.47T/7T3, 'NJmber of frames requested :
ELSE

TYPE 511:,.- Jner of frames
FCR.AT)'3, 'lurner 3f frames requestec ',:6)

END:F

Print the nmber cf channels out of the total nwurber which are
-elno stuilec. Snow asc the cnanneis and the hydrophones they

--- ccrrespcnc tr.

TYPE 630C, NUMBERCHOSEN,TCTALCNANN'LS

APPENDIX B

.P,, J. ., 1 JI- J. . .- .. .,- ,. ., - .- ' .. :".. ..'/ ", ; 4 .,. . "'.' .' .$4.: _'_" ' ," .

APPENDIX B 49

6000 FORMAT(/1 °,T3,°Channel usage 1,12,' chosen out of ,
12,1 total')

C..................°.....°......°.....°..........•
C--- Call routine to compress the chosen channels into a formaat,.%

C--- suitable for screen output, is. 1-5,7,11,15-24.
C

CALL COMPRESS (Number chosen, Channels chosen,NELS)
TYPE-,' Channels -, OUTVECT(:NEL) %r

CALL CCMPRESS(Number chosen, Hydrophones chosen,NELS)
TYPE-,' Acoustic-Channels:', OUTVECT(:NELS)

C--- Print the number of records used, the number of FFT's calculated,
C--- :nd the average amount of system time per FFT per channel (not
C--- known on the first call.)C

TYPE 7000, framesprocessed
7000 FORMAT(/' °,T3,'Number of input file accesses : ',16)

TYPE 8000, nrec %
8000 FORMAT(/' ',T3,'Number of records processed : ',f6.2)

TYPE 8100
S1C0 FORMAT(' ',T3,1Average time per frame sec-)

--- set the timer and find the absolute value of time zero.
C BASE_TIME - FORSSECNDS (0.0)
Co°.............°........o........... °.............. m.

C--- For successive calls just print the dynamic paramters.
C

ELSE. -
C ------------------ ~--
C--- Find the amount of system time to have elapsed since time zero.
C

DELTA TIME - FORSSECNDS(BASE TIME) P
C --------------- -------------------------- ---------------------------
C--- Calculate the average time per FFT per channel.
C

average..time_per_record - DELTA TIME / nrec
C--
C--- Update the system time.
C

CALL SET CURSOR(2,30) .
TYPE 9001, DATE AND TIME

9000 FORMAT('+',A)
Co..........------------------------------ ~------------------------------
C--- :f the number of channels and hydrophones printed on the first call ,._SS..
C--- were less than or equal to 16 then 16 lines were devoted to static
C--- parameters; otherwise, 18 lines were devoted to static parameters.
C

IF (NELS .LE. 50) THEN
BASE - 15 V

ELSE %
BASE - 17ENDIF F

C--- Update the number of records used, the FFT's completed and the
C--- average tire per FFT per channel.
C

CALL SET CURSOR(BASE + 2,37)
TYPE 9101, framesprocessed

91C0 FORMAT('+',16)
CALL SET CURSOR(BASE + 4,33)
TYPE 9201U, nrec

920C FOMAT(1+',f6.1)
CALL SET CURSOR(BASE + 5,27)
TYPE 930U, averagetimeperrecord

9300 FORMAT ('+ , F5.2) * %
ENDI F ,'

RETURN
END

SUBROUTINE COMPRESS (NUMBERCHOSEN, INVECT,NELS)

CHARACTER 128 OUTVECT %

INTEGER'2 Number chosen %
INTEGER*2 INVECT (NUMBERCHOSEN)
INTEGER 2 Last flag
INTEGER'2 START
INTEGER'2 ST
INTEGER'2 Tamp flag ZA
INTEGER*2 NELS
INTEGER'2 L
INTEGER-2 M

COMMION /OUT/OUTVECT

if (number chosen.eq.1)then
encode (2,100, outvect (1 :2)) nvect (l)

100 format (12)
nel,- 2---%=

APPENDIX B I
%

.1 e P 'e*, .1 -P ?S e** * *

% % %.%
" "~~L A "e .- C06Z , "" , , . "", ":""""" . , ", , .. . - . T ' """''. . " . , ,"" . .". . . ."""""""""" '-

so APPENDIX B

rat a~rr.

START - NE-

NELS-
Last ~a

Mg 2

:)C 2* ime chs~

:r ~ ~ '--osa...5'a

S- S-

ELSE

ES7 VC

EX: :F

CHA ACTE .2 O NVLC'

:NDEG7E BP-? P L M. '.ag a fa; ar S

:KEGEP2 STR

COMNC/O[2,Z.OVEC':S~

F ORWA (' 2
SEPAflATOM
CALL F:C.LL STAr L~, 1,. SIPARA-DFT, z,&S7 F LAC, ME:S

ENCOE(2,.Z.L~: S-AP
SEPARLA7:; % .a

SEPARAC-

END

'HaROC-NE FS : * ELKN- PSv A L

:HAACTL.P*: S[PAAA3

IWTEGR12 .aa: fla

:N%"EGEP*2
:NtrLP*2 i

OUVCTLL -O M-VEC(m:E

NELS K ELS

- SEPARArt4
NELS -NELS *p

L SL a

EPC J

LSE

APPENDIX B a

2%

. 1 % J
* ~- - ~ '- a

APPENDIX B 51

MEL MELS *3

-f %

APPENDIX B

'S

UNLIMITED DISTRIBUTION
53

UNCLASSIFIED
*D SooMv COleeM.

DOCUMENT CONTROL DATA - R & D
ISm'cusy claesfcation of title, body of aesect and indemxng annotation nist be mtwed wlen the Oweell document is €1m omodI

I ORIGINATING ACTIVITY 20. DOCUMENT SECURITY CLASSIFICATION
DREA UNCLASS1FIED

)2b. GROUP
TC

3. DOCUMENT TITLE

A VERSATILE TOOL FOR DATA FILE TRANSFER AND MANIPULATION

4 DESCRIPTIVE NOTES Typeto rland ,icksil,,,,)Technical Communication. Dec. 1986

S. AUTHORIS) (Last name. first nrme, meddle initil)

FARRELL. Joseph B.

6. DOCUMENT DATE y 9. TOTAL NO. OF PAGES 7b. NO. OF REFS
January 1987 57 3

Bl. PROJECT OR GRANT NO. ge. ORIGINATOR'S DOCUMENT NUMER(O

DREA TECHNICAL COMMUNICATION 87/303

8b. CONTRACT NO. lb. OTHER DOCUMENT NO.() IAny oDer nwraen Ow tat m ey
asshgned m$ doasientl)

10 DISTRIBUTION STATEMENT

UNLIMITED DISTRIBUTION

It SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY

13 ABSTRACT

This document describes in detail a software tool for manipulating data files. The
Surveillance Acoustics section at Defence Research Establishment Atlantic has acquired
VAX computers over the last few years, and analysis tasks which were formerly done on
PDP-1 1 computers are now being moved to the VAXen. PDP-I Is are still used in the at-
sea data collection role, so some means is necessary of transferring the data files thus
produced to the VAXen for signal processing and analysis. PDP-11 data files are typically
located on 9-track magnetic tape, so one method of transferring the data would be to read
PDP- II tapes on the VAXen. The software tool described here (a program named
TRANSFER) was written, in part, to perform this data transfer chore, taking into account
the special formats and header information in the files produced by the PDP-1 Is.
Manipulation of data files already residing on a VAX is also possible using TRANSFER.
The program is versatile, allowing the user to choose channels and data segments to be
transferred between files with a high degree of freedom.

%'

%

i"

-'

Is

,'I- dmV "W "f* " % .% % " % ' *.,, . % ',' " ,.,,:._.',,,-':' w,. ,,. , , _ :-, ,,. ., ,-...". . ",- - ." -. " ." "i- " ,. ..';...-". '. . ." ". ,-, --.' -, , " - -:,' ,-.":. -

54 UNCLASSIFIED

Computers

VAX

File Transfer

Data Manipulation

Underwater ACOUSticsA

IORIGINATING ACTIVITY lEnar the natytendeadu ofthew It. OTHER DOCUMENT NUMBER(S), It the daamno he. been
nrea-lt-on egmien She document. aelptd envy oter documnt PAmbers (eihor byr the oep~or

or by 111e IManoI. OW 0e1 iner PA kWamW.
', DOCUMENT SECURITY CLASIFICATION Enter the Oveall

wewwneY classification Of the documfent wicldng spato nveng 1. DIXTRIBUTHION STATEMENT Entr an llm~im en
termsI whenever, apoo"bt. f, -sho disentination of Owe documnent. ~them a thoss engoad

2b. GROUP Enter security toessig.4,mtion grou "uta The h yu-f emuaa. tn tndr ttnut st
rouu. ae Wpined in ApodteI of me ORB Securty Reguatrene Ill1) toulled requeele mve, Olsitsi copie of shi

dociment Irau. Whei fefes, demoumeiae Now."
3 nOCUMEFT TITLE tier the contoeste documntl fitl in eN

cao-t el lers Titles in al gat should In unetgleed Of 0 (21 *Avwwruepnent and dlentn1i0en of ft osen
iulf.cowntly 1 daetvs ltle cannet be selected valthimit clase- is not euthartaad without priorw uMpa heam
cat-o. gshew 1sle ctsmutmain wioth OW uue 6no4Waprn-eete ernetmn; act yI.-

It. SUPPLEMENTARY NOTES Use for addtional taelenatery
4 OESCRIPTIVE NOTES. Enter the geoty of documnent, a.& notw

Irichn.Cal Fega.. technical note 0- technical 1etter If NeOmV
at. snow Ithe typeo of docuntnl e,§L onlow". avrpress 12. SIPONdUORING ACTIVITY Enter the nore of "to depeowmwit,
sooinm~ev, annual or final. Gtve the inclusive dates visen a prol of fie or lboaratory wmnearl In resarch and
specific reportiIng period it covered. owasewei Iniclude addessa.

5 AUTHOR(ISI Enter the ouvrgril of euttuowta) as ownon of 13. ABSTRACT Enter an @Wat getno a brat oad (eague
-the doicumnent. Enter tea snre. Brst tarme, mddle initial. maor~y of M document, gan "WOue Bi May On loin

It nonlifty~ e mat. The iton, of me anrctea author at an eoaoaoa e mtelef od 01e doau , -ean". It Is hdolhy
ablute mvinsmium reguresnent. 11 bIS that mhe aetMa of classified darnunanha be ue

set seas apmi of eaac gall end st~ en
6. DOCUMENT DATE. Enter the date Enviontt. "eor) of huamn of mhe sprlty. awtfm of mea binald

E stabeutfuunent appoval for publication of mei decument. Be me Persaah loantei she dA$ t= W i Be *1lfe ~
eweutdw as "TS. W5. 1C). 1111. or EUl.

Y. TOTAL NUMBER OF PAGES The tota' PaP ~It shoeld 1
losiov, normal Papu"ton Pecaoec ia. ena ORse nM~e The baget of the obtract ftbuld be lutNle to 30 Uepe.
of palci cconiIn unlaurnsgon saendard typwmeln beas.7 W alleti 60ng

7b NUMBER9[Of REFERENCES Entr melowie nuor of 14 KEY WORDS Key wod e e chnically ofnNut term. or i
rese'esces cited as Woo doument. theon OdireOt witewcterla. a decuntent end Gould bhooelP% t

on eeg o the deimn.Key se hould to telected so
Ba PROjECT OR1 GRAN4T NUMBER If ReProprasa. enterhe the no. Ucumtt- mtrnn ae rewired. tletflise. tud' as

apomabltir osecat end deownenin Protect Or pan tnufber weguimeeemdal deugnon. !rd "come. mititer poect ado
under Wh-Ch the doCumnent wee owrtten. rmwe. goliapic Iseetnn. nay to ussid as bay wan us Otel

be IOaotd Or an Wniseea Of tdeu ObnWEt.
8b CONTRACT NUMBER it eprote. enter the apibale

nootflier under which 00t documentf wA ar$an.

q3~ ORIG NATOR'S DOCUMENT NUMBERISI Entem
, fI It lt.,u01tvfl nsaote by Which the decunbut wIlNtob
.nnfi-l end cori,oloied boo the eregunte activity Thus

nuonbe. mutt be iniauer to this deauoeuet

'No %

V.%

r4U

